Chiral resolution of racemic phenylpropanoids with tyrosinase inhibitory activities from the fruits of Crataegus pinnatifida Bge.
Crataegus pinnatifida Bge
molecular docking
phenylpropanoid enantiomers
tyrosinase inhibitory activity
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
24
05
2022
received:
03
04
2022
accepted:
31
05
2022
pubmed:
20
7
2022
medline:
13
10
2022
entrez:
19
7
2022
Statut:
ppublish
Résumé
Seven pairs of enantiomeric phenylpropanoids (1a/1b-7a/7b), including eight undescribed phenylpropanoids (1a, 2a/2b, 3a, 5a, 6a/6b, and 7b) were found in the fruits of Crataegus pinnatifida Bge. The enantiomers were separated using chiral column and elucidated through various spectroscopic methods and quantum chemical ECD calculations. The tyrosinase inhibitory activity of enantiomers was tested in vitro. Among them, enantiomers 1a/1b displayed moderate tyrosinase inhibitory activities. The interaction patterns were further studied by molecular docking, and the results indicated compounds 1a/1b may bind in the active site near the copper atom and interacted with the hydrophobic areas in the active pocket. PRACTICAL APPLICATIONS: Melanins exist widely in organisms and will be produced more against environmental stresses. Without th enzymatic action of tyrosinase, melanin biosynthesis would be blocked. Thus, tyrosinase inhibitors have been developed to modulate melanin formation. In this study, the enantiomeric phenylpropanoid isolated from the fruits of C. pinnatifida Bge displayed moderate tyrosinase inhibitory activities. This work may provide foundations for further research on tyrosinase inhibitor from natural sources.
Substances chimiques
Melanins
0
Copper
789U1901C5
Monophenol Monooxygenase
EC 1.14.18.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14304Subventions
Organisme : Career Development Support Plan for Young and Middle-aged Teachers in Shenyang Pharmaceutical University (ZQN2018006)
Organisme : LiaoNing Revitalization Talents Program (XLYC2007180)
Organisme : Program for Major Scientific and Medical Technology Problems of China Medicine Education Association in 2020 (2020KTS003)
Organisme : Science and Technology Planning Project of Liaoning Province (2021JH1/10400049)
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Biswas, T. T., Yu, J., & Nierstrasz, V. A. (2022). Piezoelectric inkjet printing of tyrosinase (polyphenol oxidase) enzyme on atmospheric plasma treated polyamide fabric. Scientific Reports, 12, 6828. https://doi.org/10.1038/s41598-022-10852-2
Bruhn, T., Schaumlöffel, A., Hemberger, Y., & Bringmann, G. (2013). SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality, 25(4), 243-249. https://doi.org/10.1002/chir.22138
Chai, W.-M., Chen, C.-M., Gao, Y.-S., Feng, H.-L., Ding, Y.-M., Shi, Y., Zhou, H.-T., & Chen, Q.-X. (2014). Structural analysis of proanthocyanidins isolated from fruit stone of Chinese hawthorn with potent antityrosinase and antioxidant activity. Journal of Agricultural and Food Chemistry, 62(1), 123-129. https://doi.org/10.1021/jf405385j
Chang, T. S. (2012). Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials, 5(9), 1661-1685. https://doi.org/10.3390/ma5091661
Chen, J., Yu, X., & Huang, Y. (2016). Inhibitory mechanisms of glabridin on tyrosinase. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 168, 111-117. https://doi.org/10.1016/j.saa.2016.06.008
Cui, T., Nakamura, K., Tian, S., Kayahara, H., & Tian, Y.-L. (2006). Polyphenolic content and physiological activities of Chinese hawthorn extracts. Bioscience, Biotechnology, and Biochemistry, 70(12), 2948-2956. https://doi.org/10.1271/bbb.60361
Da Silva, A. P., Silva, N. d. F., Andrade, E. H. A., Gratieri, T., Setzer, W. N., Maia, J. G. S., & da Silva, J. K. R. (2017). Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS One, 12(5), e0175598. https://doi.org/10.1371/journal.pone.0175598
Dai, Y., Zhou, G. X., Kurihara, H., Ye, W. C., & Yao, X. S. (2006). Biphenyl glycosides from the fruit of Pyracantha fortuneana. Journal of Natural Products, 69(7), 1022-1024. https://doi.org/10.1021/np0600853
Delano, W. L. (2002). The PyMol molecular graphics system. Proteins Structure Function and Bioinformatics, 30, 442-454.
Dong, L.-P., Liu, H.-Y., Ni, W., Li, J.-Z., & Chen, C.-X. (2006). Four new compounds from the leaves of Acer truncatum. Chemistry & Biodiversity, 3(7), 791-798. https://doi.org/10.1002/cbdv.200690081
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., & Fox, D. J. (2009). Gaussian 09 Revision A.1. Gaussian Inc.
Gilly, R., Mara, D., Oded, S., & Zohar, K. (2001). Resveratrol and a novel tyrosinase in Carignan grape juice. Journal of Agricultural & Food Chemistry, 49(3), 1479-1485. https://doi.org/10.1021/jf0011079
Goto, H., & Osawa, E. (1989). Corner flapping: A simple and fast algorithm for exhaustive generation of ring conformations. Journal of the American Chemical Society, 111(24), 8950-8951. https://doi.org/10.1021/ja00206a046
Guo, R., Lin, B., Shang, X. Y., Zhou, L., & Song, S. J. (2018). Phenylpropanoids from the fruit of Crataegus pinnatifida exhibit cytotoxicity on hepatic carcinoma cells through apoptosis induction. Fitoterapia, 127, 301-307. https://doi.org/10.1016/j.fitote.2018.03.003
Guo, R., Lv, T., Han, F., Hou, Z., Yao, G., Lin, B., Wang, X., Huang, X., & Song, S. (2020). New norlignan enantiomers from the fruit of Crataegus pinnatifida with neuroprotective activities. Chinese Chemical Letters, 31(5), 1254-1258. https://doi.org/10.1016/j.cclet.2019.09.042
Guo, R., Lv, T. M., Han, F. Y., Lin, B., Yao, G. D., Wang, X. B., Huang, X. X., & Song, S. J. (2019). Chiral resolution and neuroprotective activities of enantiomeric dihydrobenzofuran neolignans from the fruit of Crataegus pinnatifida. Bioorganic Chemistry, 85, 469-474. https://doi.org/10.1016/j.bioorg.2019.02.018
Guo, R., Lv, T.-M., Shang, X.-Y., Yao, G.-D., Lin, B., Wang, X.-B., Huang, X.-X., & Song, S.-J. (2019). Racemic neolignans from Crataegus pinnatifida: Chiral resolution, configurational assignment, and cytotoxic activities against human hepatoma cells. Fitoterapia, 137, 104287. https://doi.org/10.1016/j.fitote.2019.104287
Guo, R., Shang, X.-Y., Lv, T.-M., Yao, G.-D., Lin, B., Wang, X.-B., Huang, X.-X., & Song, S.-J. (2019). Phenylpropanoid derivatives from the fruit of Crataegus pinnatifida Bunge and their distinctive effects on human hepatoma cells. Phytochemistry, 164, 252-261. https://doi.org/10.1016/j.phytochem.2019.05.005
Guo, R., Zhao, P., Yu, X., Yao, G., Lin, B., Huang, X., & Song, S. (2021). (±)-Pinnatifidaones A-D, four pairs of highly modified neolignan enantiomers with a rare spirocyclohexenone skeleton from Crataegus pinnatifida. Organic Chemistry Frontiers, 8(5), 953-960. https://doi.org/10.1039/D0QO01475C
Gür, B., Kaya, E. D., Türkhan, A., & Gür, F. (2021). A novel method for explaining the product inhibition mechanisms via molecular docking: Inhibition studies for tyrosinase from Agaricus bisporus. Journal of Biomolecular Structure & Dynamics, 1, 15. https://doi.org/10.1080/07391102.2021.1905069
Huang, X.-X., Liu, Q.-B., Wu, J., Yu, L.-H., Cong, Q., Zhang, Y., Lou, L.-L., Li, L.-Z., & Song, S.-J. (2014). Antioxidant and tyrosinase inhibitory effects of neolignan glycosides from Crataegus pinnatifida seeds. Planta Medica, 80(18), 1732-1738. https://doi.org/10.1055/s-0034-1383253
Huang, X.-X., Liu, S., Lou, L.-L., Liu, Q.-B., Zhou, C.-C., Li, L.-Z., Peng, Y., & Song, S.-J. (2014). Phenylpropanoids from Crataegus pinnatifida and their chemotaxonomic importance. Biochemical Systematics and Ecology, 54, 208-212. https://doi.org/10.1016/j.bse.2014.01.018
Huang, X.-X., Ren, Q., Song, X.-Y., Zhou, L., Yao, G.-D., Wang, X.-B., & Song, S.-J. (2018). Seven new sesquineolignans isolated from the seeds of hawthorn and their neuroprotective activities. Fitoterapia, 125, 6-12. https://doi.org/10.1016/j.fitote.2017.12.010
Jagannadh, B., Reddy, S. S., & Thangavelu, R. P. (2004). Conformational preferences of 1,4,7-trithiacyclononane: A molecular mechanics and density functional theory study. Journal of Molecular Modeling, 10(1), 55-59. https://doi.org/10.1007/s00894-003-0166-5
Jennifer, E., Paula, N., Nadia, T., Timothy, A., & Paul, R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry, 79, 5-26. https://doi.org/10.1016/j.phytochem.2012.04.006
Jurikova, T., Sochor, J., Rop, O., Mlcek, J., Balla, S., Szekeres, L., Adam, V., & Kizek, R. (2012). Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida Buge) fruits. Molecules, 17(12), 14490-14509. https://doi.org/10.3390/molecules171214490
Kim, K. H., Ha, S. K., Choi, S. U., Kim, S. Y., & Lee, K. R. (2013). Phenolic constituents from the twigs of Euonymus alatus and their cytotoxic and anti-inflammatory activity. Planta Medica, 79(5), 361-364. https://doi.org/10.1055/s-0032-1328286
Liu, P., Yang, B., & Kallio, H. (2010). Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. Var. Major) fruit by high performance liquid chromatography-electrospray ionization mass spectrometry. Food Chemistry, 121(4), 1188-1197. https://doi.org/10.1016/j.foodchem.2010.02.002
Lou, X., Xu, H., Hanna, M., & Yuan, L. (2020). Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT, 130, 109643. https://doi.org/10.1016/j.lwt.2020.109643
Lou, X. M., Xiong, J. J., Tian, H. X., Yu, H. Y., Chen, C., Huang, J., Yuan, H. B., Hanna, M., Yuan, L., & Xu, H. D. (2022). Effect of high-pressure processing on the bioaccessibility of phenolic compounds from cloudy hawthorn berry (Crataegus pinnatifida) juice. Journal of Food Composition and Analysis, 110, 104540. https://doi.org/10.1016/j.jfca.2022.104540
Pillaiyar, T., Namasivayam, V., Manickam, M., & Jung, S. H. (2018). Inhibitors of melanogenesis: An updated review. Journal of Medicinal Chemistry, 61(17), 7395-7418. https://doi.org/10.1021/acs.jmedchem.7b00967
Sawant, R. L., Lanke, P. D., & Wadekar, J. B. (2013). Tyrosinase inhibitory activity, 3D QSAR, and molecular docking study of 2,5-disubstituted-1,3,4-oxadiazoles. Journal of Chemistry, 2013, 1-7. https://doi.org/10.1155/2013/849782
Schrödinger, L. (2011). LigPrep software, version 2.5. Schrödinger, LLC.
Shi, C., Xu, M.-J., Bayer, M., Deng, Z.-W., Kubbutat, M. H. G., Waejen, W., Proksch, P., & Lin, W.-H. (2010). Phenolic compounds and their anti-oxidative properties and protein kinase inhibition from the Chinese mangrove plant Laguncularia racemosa. Phytochemistry, 71(4), 435-442. https://doi.org/10.1016/j.phytochem.2009.11.008
Shi, X.-L., Yan, J.-K., Li, W.-K., Donkor, P. O., Gao, X.-M., Ding, L.-Q., & Qiu, F. (2018). Two pairs of phenylpropanoid enantiomers from the leaves of Eucommia ulmoides. Journal of Asian Natural Products Research, 20(11), 1045-1054. https://doi.org/10.1080/10286020.2018.1483347
Song, X., Ni, M., Zhang, Y., Zhang, G., & Gong, D. (2021). Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid. Food Chemistry, 349(1), 129172. https://doi.org/10.1016/j.foodchem.2021.129172
Spassov, S.-L. (1969). Nuclear magnetic resonance spectra, configuration and conformation of diastereomers: 3-substituted-2,3-diphenylpropanoic acids and their methyl esters. Tetrahedron, 25(16), 3631-3638. https://doi.org/10.1016/S0040-4020(01)82896-9
Taslimi, P. (2020). Evaluation of in vitro inhibitory effects of some natural compounds on tyrosinase activity and molecular docking study: Antimelanogenesis potential. Journal of Biochemical and Molecular Toxicology, 34(11), e22566. https://doi.org/10.1002/jbt.22566
Wu, Y.-Y., Huang, X.-X., Wu, J., Zhou, L., Li, D.-Q., Liu, Q.-B., Li, L.-Z., Yan, X.-J., & Song, S.-J. (2015). A new cyclolignan glycoside from the tubers of Pinellia ternata. Journal of Asian Natural Products Research, 17(11), 1097-1103. https://doi.org/10.1080/10286020.2015.1041931
Ying, X., Wang, R., Xu, J., Zhang, W., Li, H., Zhang, C., & Li, F. (2009). HPLC determination of eight polyphenols in the leaves of Crataegus pinnatifida Bge. Var. Major. Journal of Chromatographic Science, 47(3), 201-205. https://doi.org/10.1093/chromsci/47.3.201
Zhang, P.-C., & Xu, S.-X. (2001). Flavonoid ketohexosefuranosides from the leaves of Crataegus pinnatifida Bge. Var. Major N.E.Br. Phytochemistry, 57(8), 1249-1253. https://doi.org/10.1016/S0031-9422(01)00170-4
Zhang, X., Lu, K.-Z., Yan, H.-W., Feng, Z.-M., Yang, Y.-N., Jiang, J.-S., & Zhang, P.-C. (2021). An ingenious method for the determination of the relative and absolute configurations of compounds containing aryl-glycerol fragments by 1H NMR spectroscopy. RSC Advances, 11(14), 8107-8116. https://doi.org/10.1039/D0RA09712H
Zhao, P., Zhang, H., Han, F. Y., Guo, R., & Song, S. J. (2019). Chiral resolution and neuroprotective activities of enantiomeric 8-O-4′ neolignans from the fruits of Crataegus pinnatifida Bge. Fitoterapia, 136, 104164. https://doi.org/10.1016/j.fitote.2019.05.003
Zhao, Y., Hu, J. J., Bai, X. L., Liu, H. P., Qi, X. W., & Liao, X. (2022). Fast screening of tyrosinase inhibitors from traditional Chinese medicinal plants by ligand fishing in combination with in situ fluorescent assay. Analytical and Bioanalytical Chemistry, 414(6), 2265-2273. https://doi.org/10.1007/s00216-021-03864-w