Adaptation to Environmental Extremes Structures Functional Traits in Biological Soil Crust and Hypolithic Microbial Communities.
biological soil crusts
cyanobacteria
desert ecosystems
environmental microbiology
extreme environments
metagenomics
moss
Journal
mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636
Informations de publication
Date de publication:
30 08 2022
30 08 2022
Historique:
pubmed:
20
7
2022
medline:
20
7
2022
entrez:
19
7
2022
Statut:
ppublish
Résumé
Biological soil crusts (biocrusts) are widespread in drylands and deserts. At the microhabitat scale, they also host hypolithic communities that live under semitranslucent stones. Both environmental niches experience exposure to extreme conditions such as high UV radiation, desiccation, temperature fluctuations, and resource limitation. However, hypolithic communities are somewhat protected from extremes relative to biocrust communities. Conditions are otherwise similar, so comparing them can answer outstanding questions regarding adaptations to environmental extremes. Using metagenomic sequencing, we assessed the functional potential of dryland soil communities and identified the functional underpinnings of ecological niche differentiation in biocrusts versus hypoliths. We also determined the effect of the anchoring photoautotroph (moss or cyanobacteria). Genes and pathways differing in abundance between biocrusts and hypoliths indicate that biocrust communities adapt to the higher levels of UV radiation, desiccation, and temperature extremes through an increased ability to repair damaged DNA, sense and respond to environmental stimuli, and interact with other community members and the environment. Intracellular competition appears to be crucial to both communities, with biocrust communities using the Type VI Secretion System (T6SS) and hypoliths favoring a diversity of antibiotics. The dominant primary producer had a reduced effect on community functional potential compared with niche, but an abundance of genes related to monosaccharide, amino acid, and osmoprotectant uptake in moss-dominated communities indicates reliance on resources provided to heterotrophs by mosses. Our findings indicate that functional traits in dryland communities are driven by adaptations to extremes and we identify strategies that likely enable survival in dryland ecosystems.
Identifiants
pubmed: 35852333
doi: 10.1128/msystems.01419-21
pmc: PMC9426607
doi:
Substances chimiques
Soil
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Pagination
e0141921Références
mSystems. 2021 Jan 12;6(1):
pubmed: 33436509
Nat Plants. 2016 Jun 06;2:16076
pubmed: 27302768
Front Microbiol. 2021 Mar 15;12:604999
pubmed: 33790875
Front Microbiol. 2019 May 24;10:1185
pubmed: 31178855
Ecology. 2012 Jul;93(7):1626-36
pubmed: 22919909
BMC Microbiol. 2005 Jun 14;5:35
pubmed: 15955239
Environ Microbiol Rep. 2013 Apr;5(2):219-24
pubmed: 23584965
Nature. 2018 Jun;558(7710):440-444
pubmed: 29899444
ISME J. 2013 Nov;7(11):2178-91
pubmed: 23739051
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11054-9
pubmed: 26216986
ISME J. 2017 May;11(5):1168-1178
pubmed: 28094796
Science. 2011 Apr 29;332(6029):547-8
pubmed: 21527704
Nat Microbiol. 2018 Apr;3(4):415-422
pubmed: 29434326
Annu Rev Microbiol. 2012;66:325-47
pubmed: 22746333
Trends Microbiol. 2016 Oct;24(10):833-845
pubmed: 27546832
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19484-9
pubmed: 17148599
PLoS One. 2020 Jul 22;15(7):e0235928
pubmed: 32697785
FEMS Microbiol Ecol. 2020 Sep 1;96(9):
pubmed: 32573682
Plant Physiol. 2019 Mar;179(3):1040-1049
pubmed: 30602492
Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9
pubmed: 18695234
Microbiome. 2019 Apr 3;7(1):55
pubmed: 30944036
Microbiol Mol Biol Rev. 2004 Jun;68(2):263-79
pubmed: 15187184
Nucleic Acids Res. 2012 May;40(10):4288-97
pubmed: 22287627
Oecologia. 2014 Dec;176(4):933-42
pubmed: 25193314
PLoS One. 2020 Dec 22;15(12):e0244217
pubmed: 33351849
Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205
pubmed: 24214961
FEMS Microbiol Rev. 2017 May 1;41(3):392-416
pubmed: 28521336
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Appl Environ Microbiol. 2012 May;78(10):3744-52
pubmed: 22427492
Environ Microbiol. 2016 Jun;18(6):1875-88
pubmed: 26470632
J Mol Biol. 2019 Sep 20;431(20):3960-3974
pubmed: 31029702
Environ Microbiol Rep. 2011 Oct;3(5):581-6
pubmed: 23761338
Plant Signal Behav. 2011 Apr;6(4):510-5
pubmed: 21673511
Genome Biol Evol. 2016 Sep 11;8(9):2737-47
pubmed: 27503299
mSystems. 2021 May 18;6(3):
pubmed: 34006627
Environ Microbiol. 2012 Sep;14(9):2272-82
pubmed: 22779750
Microbiol Res. 2020 Jan;231:126374
pubmed: 31756597
Chem Rev. 2011 Sep 14;111(9):5492-505
pubmed: 21786783
ISME J. 2017 Oct;11(10):2305-2318
pubmed: 28696425
Front Microbiol. 2016 Nov 09;7:1809
pubmed: 27881980
Mol Microbiol. 2015 Jul;97(1):47-63
pubmed: 25825287
ISME J. 2018 Apr;12(4):1032-1046
pubmed: 29445133
Am J Bot. 2021 Feb;108(2):249-262
pubmed: 33249553
Plant J. 2021 Mar;105(5):1339-1356
pubmed: 33277766
Nature. 2001 Sep 27;413(6854):380-1
pubmed: 11574875
Glob Chang Biol. 2020 Oct;26(10):6003-6014
pubmed: 32729653
Nature. 2015 Jul 30;523(7562):555-60
pubmed: 26200339
New Phytol. 2016 Mar;209(4):1540-52
pubmed: 26452175
Microb Ecol. 2022 Jul 5;:
pubmed: 35788422
Front Microbiol. 2019 Sep 23;10:2143
pubmed: 31608023
Nucleic Acids Res. 2019 Jan 8;47(D1):D666-D677
pubmed: 30289528
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
BMC Genomics. 2014 Apr 30;15:323
pubmed: 24884595
Annu Rev Plant Biol. 2020 Apr 29;71:435-460
pubmed: 32040342
New Phytol. 2018 Nov;220(3):824-835
pubmed: 29607501
Commun Biol. 2021 Nov 18;4(1):1302
pubmed: 34795375
PLoS One. 2013 Jun 25;8(6):e66346
pubmed: 23825536
Nat Rev Microbiol. 2015 Jun;13(6):343-59
pubmed: 25978706
Integr Comp Biol. 2005 Nov;45(5):788-99
pubmed: 21676830
Extremophiles. 2013 Mar;17(2):329-37
pubmed: 23397517
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):876-81
pubmed: 17210916
PeerJ. 2020 Oct 30;8:e10119
pubmed: 33194386