[


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 07 2022
Historique:
received: 21 07 2020
accepted: 04 05 2022
entrez: 19 7 2022
pubmed: 20 7 2022
medline: 22 7 2022
Statut: epublish

Résumé

Alzheimer's disease (AD) is characterized by the brain accumulation of amyloid-β and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-β and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-β, tau, and class I histone deacetylase (HDAC I isoforms 1-3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-β PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-β and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-β plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology.

Identifiants

pubmed: 35853847
doi: 10.1038/s41467-022-30653-5
pii: 10.1038/s41467-022-30653-5
pmc: PMC9296476
doi:

Substances chimiques

Amyloid beta-Peptides 0
Hydroxamic Acids 0
tau Proteins 0
martinostat 8JJC99KHGL
HDAC1 protein, human EC 3.5.1.98
Hdac1 protein, rat EC 3.5.1.98
Histone Deacetylase 1 EC 3.5.1.98
Histone Deacetylases EC 3.5.1.98
Adamantane PJY633525U

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4171

Subventions

Organisme : NIDCD NIH HHS
ID : R01 DC014296
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA030321
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG062421
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR017208
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR026666
Pays : United States
Organisme : CIHR
ID : FRN 152985
Pays : Canada
Organisme : NIA NIH HHS
ID : R01 AG073267
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG051987
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR022976
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG075336
Pays : United States
Organisme : CIHR
ID : MOP-11-51-31
Pays : Canada
Organisme : NCRR NIH HHS
ID : S10 RR019933
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015896
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG051931
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR023401
Pays : United States

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Jack, C. R. Jr. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364 pmcid: 3622225 doi: 10.1016/S1474-4422(12)70291-0
Graff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).
pubmed: 22388814 pmcid: 3498952 doi: 10.1038/nature10849
Graff, J. & Tsai, L. H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013).
pubmed: 23324667 doi: 10.1038/nrn3427
Dulac, C. Brain function and chromatin plasticity. Nature 465, 728–735 (2010).
pubmed: 20535202 pmcid: 3075582 doi: 10.1038/nature09231
Guan, J. S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).
pubmed: 19424149 pmcid: 3498958 doi: 10.1038/nature07925
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).
pubmed: 17468743 doi: 10.1038/nature05772
Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).
pubmed: 25131830 doi: 10.1038/nrd4360
Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).
pubmed: 20448184 doi: 10.1126/science.1186088
Lattal, K. M. & Wood, M. A. Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat. Neurosci. 16, 124–129 (2013).
pubmed: 23354385 pmcid: 3740093 doi: 10.1038/nn.3302
Sweatt, J. D. Behavioural neuroscience: down memory lane. Nature 447, 151–152 (2007).
pubmed: 17468746 doi: 10.1038/nature05716
Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).
pubmed: 22869198 pmcid: 3596876 doi: 10.1038/nm.2828
Zhu, X. et al. HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer’s disease. Aging Cell 16, 1073–1082 (2017).
pubmed: 28771976 pmcid: 5595690 doi: 10.1111/acel.12642
Mahady, L. et al. Frontal cortex epigenetic dysregulation during the progression of Alzheimer’s Disease. J. Alzheimer’s Dis. 62, 115–131 (2018).
doi: 10.3233/JAD-171032
Yamakawa, H. et al. The transcription factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Rep. 20, 1319–1334 (2017).
pubmed: 28793257 doi: 10.1016/j.celrep.2017.07.044
Gonzalez-Zuniga, M. et al. c-Abl stabilizes HDAC2 levels by tyrosine phosphorylation repressing neuronal gene expression in Alzheimer’s disease. Mol. Cell 56, 163–173 (2014).
pubmed: 25219501 doi: 10.1016/j.molcel.2014.08.013
Bie, B. et al. Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat. Neurosci. 17, 223–231 (2014).
pubmed: 24441681 doi: 10.1038/nn.3618
Yang, S. S., Zhang, R., Wang, G. & Zhang, Y. F. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl. Neurodegener. 6, 19 (2017).
pubmed: 28702178 pmcid: 5504819 doi: 10.1186/s40035-017-0089-1
Xu, K., Dai, X. L., Huang, H. C. & Jiang, Z. F. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid. Med. Cell. Longev. 2011, 143269 (2011).
pubmed: 21941604 pmcid: 3177096 doi: 10.1155/2011/143269
Kilgore, M. et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35, 870–880 (2010).
pubmed: 20010553 doi: 10.1038/npp.2009.197
Cuadrado-Tejedor, M. et al. A First-in-Class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer’s disease mice. Neuropsychopharmacology 42, 524–539 (2017).
pubmed: 27550730 doi: 10.1038/npp.2016.163
Cummings, J., Lee, G., Ritter, A. & Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y) 4, 195–214 (2018).
doi: 10.1016/j.trci.2018.03.009
Anderson, K. W. et al. Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain. PLoS ONE 10, e0126592 (2015).
pubmed: 25962138 pmcid: 4427357 doi: 10.1371/journal.pone.0126592
Schueller, E. et al. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer’s disease patients. Eur. Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2020.01.015 (2020).
Wey, H. Y. et al. Insights into neuroepigenetics through human histone deacetylase PET imaging. Sci. Transl. Med. 8, 351ra106 (2016).
pubmed: 27510902 pmcid: 5784409 doi: 10.1126/scitranslmed.aaf7551
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
pubmed: 1759558 doi: 10.1007/BF00308809
Pascoal, T. A. et al. Amyloid-beta and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol. Psychiatry 22, 306–311 (2017).
pubmed: 27021814 doi: 10.1038/mp.2016.37
Kim, D. et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803–817 (2008).
pubmed: 19081376 pmcid: 2912147 doi: 10.1016/j.neuron.2008.10.015
Akhtar, M. W. et al. Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J. Neurosci. 29, 8288–8297 (2009).
pubmed: 19553468 pmcid: 2895817 doi: 10.1523/JNEUROSCI.0097-09.2009
Montgomery, R. L., Hsieh, J., Barbosa, A. C., Richardson, J. A. & Olson, E. N. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA 106, 7876–7881 (2009).
pubmed: 19380719 pmcid: 2683090 doi: 10.1073/pnas.0902750106
Jiang, Y. & Hsieh, J. HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels. Proc. Natl Acad. Sci. USA 111, 13541–13546 (2014).
pubmed: 25161285 pmcid: 4169927 doi: 10.1073/pnas.1411939111
Jeong, H. et al. Pan-HDAC inhibitors promote tau aggregation by increasing the level of acetylated Tau. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20174283 (2019).
Pao, P. C. et al. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease. Nat. Commun. 11, 2484 (2020).
pubmed: 32424276 pmcid: 7235043 doi: 10.1038/s41467-020-16361-y
Fleisher, A. S. et al. Chronic divalproex sodium use and brain atrophy in Alzheimer disease. Neurology 77, 1263–1271 (2011).
pubmed: 21917762 pmcid: 3179645 doi: 10.1212/WNL.0b013e318230a16c
Beach, T. G., Monsell, S. E., Phillips, L. E. & Kukull, W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. Neuropathol. Exp. Neurol. 71, 266–273 (2012).
pubmed: 22437338 doi: 10.1097/NEN.0b013e31824b211b
Mirra, S. S. et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41, 479–486 (1991).
pubmed: 2011243 doi: 10.1212/WNL.41.4.479
Do Carmo, S. & Cuello, A. C. Modeling Alzheimer’s disease in transgenic rats. Mol. Neurodegener. 8, 37 (2013).
pubmed: 24161192 pmcid: 4231465 doi: 10.1186/1750-1326-8-37
Cohen, R. M. et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J. Neurosci. 33, 6245–6256 (2013).
pubmed: 23575824 pmcid: 3720142 doi: 10.1523/JNEUROSCI.3672-12.2013
Pascoal, T. A. et al. In vivo quantification of neurofibrillary tangles with [(18)F]MK-6240. Alzheimers Res. Ther. 10, 74 (2018).
pubmed: 30064520 pmcid: 6069775 doi: 10.1186/s13195-018-0402-y
Cselenyi, Z. et al. Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J. Nucl. Med. 53, 415–424 (2012).
pubmed: 22323782 doi: 10.2967/jnumed.111.094029
Thomas, B. A. et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 38, 1104–1119 (2011).
pubmed: 21336694 doi: 10.1007/s00259-011-1745-9
Klein, A. & Tourville, J. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012).
pubmed: 23227001 pmcid: 3514540 doi: 10.3389/fnins.2012.00171
Lammertsma, A. A. & Hume, S. P. Simplified reference tissue model for PET receptor studies. NeuroImage 4, 153–158 (1996).
pubmed: 9345505 doi: 10.1006/nimg.1996.0066
Joseph-Mathurin, N. et al. Utility of perfusion PET measures to assess neuronal injury in Alzheimer’s disease. Alzheimers Dement. (Amstradam) 10, 669–677 (2018).
doi: 10.1016/j.dadm.2018.08.012
Chen, Y. J. et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J. Nucl. Med. 56, 1199–1205 (2015).
pubmed: 26045309 doi: 10.2967/jnumed.114.152405
Rodriguez-Vieitez, E. et al. Comparability of [(18)F]THK5317 and [(11)C]PIB blood flow proxy images with [(18)F]FDG positron emission tomography in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 37, 740–749 (2017).
pubmed: 27107028 doi: 10.1177/0271678X16645593
Hsiao, I. T. et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur. J. Nucl. Med. Mol. Imaging 39, 613–620 (2012).
pubmed: 22270508 doi: 10.1007/s00259-011-2051-2
Wey, H. Y. et al. Kinetic analysis and quantification of [(1)(1)C]Martinostat for in vivo HDAC imaging of the brain. ACS Chem. Neurosci. 6, 708–715 (2015).
pubmed: 25768025 doi: 10.1021/acschemneuro.5b00066
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553 pmcid: 4243026 doi: 10.1038/nature11405
Gryglewski, G. et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. NeuroImage 176, 259–267 (2018).
pubmed: 29723639 doi: 10.1016/j.neuroimage.2018.04.068
Smith, R., Wibom, M., Pawlik, D., Englund, E. & Hansson, O. Correlation of in vivo [18F]Flortaucipir with postmortem Alzheimer disease tau pathology. JAMA Neurol. 76, 310–317 (2019).
pubmed: 30508025 doi: 10.1001/jamaneurol.2018.3692
Montine, T. J. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 123, 1–11 (2012).
pubmed: 22101365 doi: 10.1007/s00401-011-0910-3
Mathotaarachchi, S. et al. VoxelStats: a MATLAB package for multi-modal voxel-wise brain image analysis. Front. Neuroinform. 10, 20 (2016).
pubmed: 27378902 pmcid: 4908129 doi: 10.3389/fninf.2016.00020
Kievit, R. A. et al. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nat. Commun. 5, 5658 (2014).
pubmed: 25519467 doi: 10.1038/ncomms6658
Pascoal, T. A. et al. [11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer’s disease. https://doi.org/10.5281/zenodo.6388101 (2022).

Auteurs

Tharick A Pascoal (TA)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.
Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Departments of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Mira Chamoun (M)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Elad Lax (E)

Department of Molecular Biology, Ariel University, Ariel, Israel.
Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.

Hsiao-Ying Wey (HY)

Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.

Monica Shin (M)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Kok Pin Ng (KP)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Min Su Kang (MS)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.
Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Sulantha Mathotaarachchi (S)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Andrea L Benedet (AL)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Joseph Therriault (J)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Firoza Z Lussier (FZ)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Frederick A Schroeder (FA)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Jonathan M DuBois (JM)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Baileigh G Hightower (BG)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Tonya M Gilbert (TM)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Nicole R Zürcher (NR)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Changning Wang (C)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Robert Hopewell (R)

Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Mallar Chakravarty (M)

Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada.

Melissa Savard (M)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Emilie Thomas (E)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Sara Mohaddes (S)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Sarah Farzin (S)

Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada.

Alyssa Salaciak (A)

Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada.

Stephanie Tullo (S)

Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada.

A Claudio Cuello (AC)

Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.

Jean-Paul Soucy (JP)

Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Gassan Massarweh (G)

Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Heungsun Hwang (H)

Department of Psychology, McGill University, Montreal, QC, Canada.

Eliane Kobayashi (E)

Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Bradley T Hyman (BT)

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Bradford C Dickerson (BC)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
Department of Psychology, McGill University, Montreal, QC, Canada.

Marie-Christine Guiot (MC)

Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

Moshe Szyf (M)

Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.

Serge Gauthier (S)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.

Jacob M Hooker (JM)

Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Pedro Rosa-Neto (P)

Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada. pedro.rosa@mcgill.ca.
Montreal Neurological Institute, McGill University, Montreal, QC, Canada. pedro.rosa@mcgill.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH