Emerging accessibility patterns in long telomeric overhangs.
FRET-PAINT
G-quadruplex
single molecule
telomere
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
26 07 2022
26 07 2022
Historique:
entrez:
20
7
2022
pubmed:
21
7
2022
medline:
23
7
2022
Statut:
ppublish
Résumé
We present single-molecule experimental and computational modeling studies investigating the accessibility of human telomeric overhangs of physiologically relevant lengths. We studied 25 different overhangs that contain 4-28 repeats of GGGTTA (G-Tract) sequence and accommodate one to seven tandem G-quadruplex (GQ) structures. Using the FRET-PAINT method, we probed the distribution of accessible sites via a short imager strand, which is complementary to a G-Tract and transiently binds to available sites. We report accessibility patterns that periodically change with overhang length and interpret these patterns in terms of the underlying folding landscape and folding frustration. Overhangs that have [4n]G-Tracts, (12, 16, 20…) demonstrate the broadest accessibility patterns where the peptide nucleic acid probe accesses G-Tracts throughout the overhang. On the other hand, constructs with [4n+2]G-Tracts, (14, 18, 22…) have narrower patterns where the neighborhood of the junction between single- and double-stranded telomeres is most accessible. We interpret these results as the folding frustration being higher in [4n]G-Tract constructs compared to [4n+2]G-Tract constructs. We also developed a computational model that tests the consistency of different folding stabilities and cooperativities between neighboring GQs with the observed accessibility patterns. Our experimental and computational studies suggest the neighborhood of the junction between single- and double-stranded telomeres is least stable and most accessible, which is significant as this is a potential site where the connection between POT1/TPP1 (bound to single-stranded telomere) and other shelterin proteins (localized on double-stranded telomere) is established.
Identifiants
pubmed: 35858438
doi: 10.1073/pnas.2202317119
pmc: PMC9335230
doi:
Substances chimiques
ACD protein, human
0
POT1 protein, human
0
Shelterin Complex
0
Telomere-Binding Proteins
0
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2202317119Subventions
Organisme : NIGMS NIH HHS
ID : R15 GM123443
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Nucleic Acids Res. 2011 Aug;39(14):6229-37
pubmed: 21441540
Nucleic Acids Res. 2016 Mar 18;44(5):1989-2006
pubmed: 26883636
Nature. 1991 Apr 18;350(6319):569-73
pubmed: 1708110
Proteins. 1995 Mar;21(3):167-95
pubmed: 7784423
RNA. 2021 Apr;27(4):390-402
pubmed: 33483368
Nat Chem. 2020 Sep;12(9):832-837
pubmed: 32690897
Nat Chem. 2013 Mar;5(3):182-6
pubmed: 23422559
EMBO Rep. 2015 Aug;16(8):910-22
pubmed: 26150098
Annu Rev Biochem. 2017 Jun 20;86:439-460
pubmed: 28141967
Genome Med. 2016 Jun 20;8(1):69
pubmed: 27323951
Nucleic Acids Res. 2005 Oct 12;33(18):5851-60
pubmed: 16221978
Nucleic Acids Res. 1998 Nov 1;26(21):5004-6
pubmed: 9776766
Nat Rev Mol Cell Biol. 2021 Apr;22(4):283-298
pubmed: 33564154
Angew Chem Int Ed Engl. 2009;48(42):7833-6
pubmed: 19757477
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11176-81
pubmed: 18676615
Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10864-9
pubmed: 16043710
Nucleic Acids Res. 2008 Oct;36(17):5482-515
pubmed: 18718931
Structure. 2014 Jun 10;22(6):842-53
pubmed: 24836024
Nucleic Acids Res. 2021 Sep 27;49(17):9724-9737
pubmed: 34478543
Nucleic Acids Res. 2021 Apr 6;49(6):3371-3380
pubmed: 33693934
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3499-503
pubmed: 21273505
Biophys J. 2013 May 21;104(10):2235-45
pubmed: 23708363
Cell. 1987 Dec 24;51(6):899-908
pubmed: 3690664
Angew Chem Int Ed Engl. 2021 May 3;60(19):10895-10901
pubmed: 33539622
Nucleic Acids Res. 2019 Nov 18;47(20):10744-10753
pubmed: 31544934
J Am Chem Soc. 2006 Dec 6;128(48):15461-8
pubmed: 17132013
FEBS J. 2010 Mar;277(5):1098-106
pubmed: 19951355
Angew Chem Int Ed Engl. 2015 Jul 13;54(29):8444-8
pubmed: 26036989
J Phys Chem B. 2012 May 17;116(19):5588-94
pubmed: 22500657
Biochim Biophys Acta Gen Subj. 2017 May;1861(5 Pt B):1246-1263
pubmed: 27979677
Nucleic Acids Res. 2015 Jul 13;43(12):5961-70
pubmed: 25990739
Nucleic Acids Res. 2014 Jan;42(2):860-9
pubmed: 24163102
Nucleic Acids Res. 2011 Apr;39(8):3282-94
pubmed: 21177648
J Am Chem Soc. 2014 Dec 31;136(52):18062-9
pubmed: 25438191
Chemphyschem. 2015 Aug 24;16(12):2562-70
pubmed: 26174803
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19819-24
pubmed: 18077414
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2990-5
pubmed: 24516170
J Biol Chem. 2011 Mar 4;286(9):7479-89
pubmed: 21183684
Nucleic Acids Res. 2021 Dec 2;49(21):12377-12393
pubmed: 34850123
Nat Med. 2006 Oct;12(10):1133-8
pubmed: 17024208
Mol Genet Genomics. 2017 Jun;292(3):483-498
pubmed: 28150040
PLoS Comput Biol. 2008 May 16;4(5):e1000070
pubmed: 18483553
Nat Genet. 2003 Apr;33(4):492-6
pubmed: 12652299
Nucleic Acids Res. 2002 Nov 1;30(21):4618-25
pubmed: 12409451
Arch Biochem Biophys. 2008 Jan 1;469(1):83-99
pubmed: 17963718
Cancer Discov. 2016 Jun;6(6):584-93
pubmed: 27029895
J Biol Chem. 2018 Jun 15;293(24):9473-9485
pubmed: 29674319
Proc Natl Acad Sci U S A. 1989 Sep;86(18):7049-53
pubmed: 2780561
Nucleic Acids Res. 2008 Mar;36(4):1200-8
pubmed: 18158301
Nano Lett. 2010 Nov 10;10(11):4756-61
pubmed: 20957983
Nucleic Acids Res. 2021 Apr 6;49(6):3063-3076
pubmed: 33693924
Nature. 2018 Jun;558(7710):465-469
pubmed: 29899445
J Med Chem. 2016 Jul 14;59(13):5987-6011
pubmed: 26840940
Nucleic Acids Res. 2010 Nov;38(21):7858-68
pubmed: 20660477
J Am Chem Soc. 2011 Dec 28;133(51):20951-61
pubmed: 22082001
Nano Lett. 2017 Oct 11;17(10):6428-6434
pubmed: 28871786
Q Rev Biophys. 2014 Nov;47(4):285-363
pubmed: 25225856
Nature. 1990 May 31;345(6274):458-60
pubmed: 2342578