A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
09 2022
Historique:
received: 01 10 2021
accepted: 09 06 2022
pubmed: 22 7 2022
medline: 31 8 2022
entrez: 21 7 2022
Statut: ppublish

Résumé

The controlled switching of fluorophores between non-fluorescent and fluorescent states is central to every super-resolution fluorescence microscopy (nanoscopy) technique, and the exploration of radically new switching mechanisms remains critical to boosting the performance of established, as well as emerging super-resolution methods. Photoactivatable dyes offer substantial improvements to many of these techniques, but often rely on photolabile protecting groups that limit their applications. Here we describe a general method to transform 3,6-diaminoxanthones into caging-group-free photoactivatable fluorophores. These photoactivatable xanthones (PaX) assemble rapidly and cleanly into highly fluorescent, photo- and chemically stable pyronine dyes upon irradiation with light. The strategy is extendable to carbon- and silicon-bridged xanthone analogues, yielding a family of photoactivatable labels spanning much of the visible spectrum. Our results demonstrate the versatility and utility of PaX dyes in fixed and live-cell labelling for conventional microscopy, as well as the coordinate-stochastic and deterministic nanoscopies STED, PALM and MINFLUX.

Identifiants

pubmed: 35864152
doi: 10.1038/s41557-022-00995-0
pii: 10.1038/s41557-022-00995-0
pmc: PMC9417988
doi:

Substances chimiques

Fluorescent Dyes 0
Ionophores 0
Silicon Z4152N8IUI

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1013-1020

Informations de copyright

© 2022. The Author(s).

Références

Biochemistry. 1994 May 17;33(19):5661-73
pubmed: 8180191
J Am Chem Soc. 2016 Aug 3;138(30):9365-8
pubmed: 27420907
Nat Chem. 2020 Feb;12(2):165-172
pubmed: 31792385
Nat Methods. 2020 Aug;17(8):789-791
pubmed: 32601424
Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11206-9
pubmed: 21953685
J Am Chem Soc. 2017 Sep 20;139(37):13200-13207
pubmed: 28820941
Chem Rev. 2018 Sep 26;118(18):9412-9454
pubmed: 30221931
Angew Chem Int Ed Engl. 2010 May 3;49(20):3520-3
pubmed: 20391447
Nat Commun. 2021 Mar 5;12(1):1478
pubmed: 33674570
Nat Rev Mol Cell Biol. 2017 Nov;18(11):685-701
pubmed: 28875992
Nat Photonics. 2021 May;15(5):361-366
pubmed: 33953795
J Org Chem. 2015 Feb 6;80(3):1299-311
pubmed: 25483978
Tetrahedron Lett. 2018 May 16;59(20):1963-1967
pubmed: 30349147
Chem Sci. 2020 Jun 22;11(28):7313-7323
pubmed: 33777348
Nat Methods. 2014 Jul;11(7):731-3
pubmed: 24859753
Nat Chem Biol. 2015 Dec;11(12):917-23
pubmed: 26575238
Nat Chem. 2013 Feb;5(2):132-9
pubmed: 23344448
Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3313-7
pubmed: 26797768
Nat Methods. 2016 May;13(5):439-42
pubmed: 27018580
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1723-7
pubmed: 26661345
J Phys D Appl Phys. 2019 Feb 6;52(6):064002
pubmed: 30799881
Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250
pubmed: 25599551
Nat Methods. 2019 Oct;16(10):1045-1053
pubmed: 31562488
ACS Chem Biol. 2011 Jun 17;6(6):600-8
pubmed: 21375253
JACS Au. 2021 May 24;1(5):690-696
pubmed: 34056637
Nat Methods. 2008 Feb;5(2):155-7
pubmed: 18193054
Nat Methods. 2011 Nov 06;8(12):1027-36
pubmed: 22056676
Anal Chem. 2021 Jun 8;93(22):7833-7842
pubmed: 34027666
Nat Commun. 2019 Oct 8;10(1):4580
pubmed: 31594948
Elife. 2016 Sep 15;5:
pubmed: 27630123
Nat Methods. 2018 May;15(5):367-369
pubmed: 29630062
ACS Chem Biol. 2018 Feb 16;13(2):475-480
pubmed: 28933823
J Am Chem Soc. 2021 Sep 15;143(36):14592-14600
pubmed: 34460256
J Am Chem Soc. 2017 Sep 13;139(36):12378-12381
pubmed: 28845665
Chemistry. 2017 Sep 7;23(50):12114-12119
pubmed: 28370443
ACS Chem Biol. 2013;8(6):1303-10
pubmed: 23557713
Chem Sci. 2017 Jan 1;8(1):559-566
pubmed: 28451202
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):11758-11762
pubmed: 32314530
Chemistry. 2021 Jan 4;27(1):451-458
pubmed: 33095954
Chem Rev. 2017 Jun 14;117(11):7478-7509
pubmed: 28287710
Science. 2017 Feb 10;355(6325):606-612
pubmed: 28008086
Sci Rep. 2015 Apr 20;5:9592
pubmed: 25892259
Nat Methods. 2016 Dec;13(12):985-988
pubmed: 27776112
Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3290-4
pubmed: 26844929
ACS Cent Sci. 2019 Sep 25;5(9):1602-1613
pubmed: 31572787

Auteurs

Richard Lincoln (R)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.

Mariano L Bossi (ML)

Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Michael Remmel (M)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.

Elisa D'Este (E)

Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany.

Alexey N Butkevich (AN)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany. alexey.butkevich@mr.mpg.de.

Stefan W Hell (SW)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany. stefan.hell@mpinat.mpg.de.
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. stefan.hell@mpinat.mpg.de.

Articles similaires

Pseudopodia Myosins Humans Actins Cell Line, Tumor

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
Humans Neurons Microscopy, Fluorescence, Multiphoton Capsules Polymers
Aluminum Carbon Quantum Dots Spectrometry, Fluorescence Limit of Detection

Classifications MeSH