OX2R-selective orexin agonism is sufficient to ameliorate cataplexy and sleep/wake fragmentation without inducing drug-seeking behavior in mouse model of narcolepsy.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2022
Historique:
received: 01 03 2022
accepted: 08 07 2022
entrez: 22 7 2022
pubmed: 23 7 2022
medline: 27 7 2022
Statut: epublish

Résumé

Acquired loss of hypothalamic orexin (hypocretin)-producing neurons causes the chronic sleep disorder narcolepsy-cataplexy. Orexin replacement therapy using orexin receptor agonists is expected as a mechanistic treatment for narcolepsy. Orexins act on two receptor subtypes, OX1R and OX2R, the latter being more strongly implicated in sleep/wake regulation. However, it has been unclear whether the activation of only OX2R, or both OX1R and OX2R, is required to replace the endogenous orexin functions in the brain. In the present study, we examined whether the selective activation of OX2R is sufficient to rescue the phenotype of cataplexy and sleep/wake fragmentation in orexin knockout mice. Intracerebroventricular [Ala11, D-Leu15]-orexin-B, a peptidic OX2R-selective agonist, selectively activated OX2R-expressing histaminergic neurons in vivo, whereas intracerebroventricular orexin-A, an OX1R/OX2R non-selective agonist, additionally activated OX1R-positive noradrenergic neurons in vivo. Administration of [Ala11, D-Leu15]-orexin-B extended wake time, reduced state transition frequency between wake and NREM sleep, and reduced the number of cataplexy-like episodes, to the same degree as compared with orexin-A. Furthermore, intracerebroventricular orexin-A but not [Ala11, D-Leu15]-orexin-B induced drug-seeking behaviors in a dose-dependent manner in wild-type mice, suggesting that OX2R-selective agonism has a lower propensity for reinforcing/drug-seeking effects. Collectively, these findings provide a proof-of-concept for safer mechanistic treatment of narcolepsy-cataplexy through OX2R-selective agonism.

Identifiants

pubmed: 35867683
doi: 10.1371/journal.pone.0271901
pii: PONE-D-22-06089
pmc: PMC9307173
doi:

Substances chimiques

Cd200r1 protein, mouse 0
Orexin Receptors 0
Orexins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0271901

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Neuropsychopharmacology. 2006 Feb;31(2):384-95
pubmed: 15988471
Neurology. 2005 Oct 25;65(8):1184-8
pubmed: 16247044
Nat Med. 2000 Sep;6(9):991-7
pubmed: 10973318
J Physiol. 2012 Aug 15;590(16):3677-89
pubmed: 22641785
Neuron. 2000 Sep;27(3):469-74
pubmed: 11055430
Neurosci Lett. 2017 Nov 1;660:1-5
pubmed: 28889006
Lancet. 2007 Feb 10;369(9560):499-511
pubmed: 17292770
Lancet. 2000 Jan 1;355(9197):39-40
pubmed: 10615891
Brain Res Bull. 2017 Apr;130:107-111
pubmed: 28093335
J Neurosci. 2011 Apr 27;31(17):6518-26
pubmed: 21525292
ACS Chem Neurosci. 2015 Jan 21;6(1):138-46
pubmed: 25496218
J Neurosci. 2014 May 7;34(19):6495-509
pubmed: 24806676
Nature. 2005 Sep 22;437(7058):556-9
pubmed: 16100511
J Comp Neurol. 2003 Sep 15;464(2):220-37
pubmed: 12898614
Cell. 1998 Mar 6;92(5):1 page following 696
pubmed: 9527442
Peptides. 2012 Oct;37(2):225-32
pubmed: 22885169
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5731-5736
pubmed: 28507129
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19480-5
pubmed: 19033203
Psychopharmacology (Berl). 2016 Jun;233(12):2329-41
pubmed: 27048158
J Neurosci. 2021 Mar 24;41(12):2733-2746
pubmed: 33558433
Arch Neurol. 2002 Oct;59(10):1553-62
pubmed: 12374492
Nature. 2016 Nov 17;539(7629):378-383
pubmed: 27806374
J Neurosci. 2006 Jan 11;26(2):398-405
pubmed: 16407535
J Neurochem. 2002 Sep;82(6):1561-5
pubmed: 12354306
Acta Physiol (Oxf). 2010 Mar;198(3):287-94
pubmed: 19694625
J Neurosci. 2010 Nov 17;30(46):15585-99
pubmed: 21084614
Curr Treat Options Neurol. 2016 Oct;18(10):43
pubmed: 27549768
Neuron. 2003 Jun 5;38(5):715-30
pubmed: 12797957
Pharmacol Rev. 2009 Jun;61(2):162-76
pubmed: 19549926
J Clin Invest. 2014 Feb;124(2):604-16
pubmed: 24382351
Neuropeptides. 2017 Dec;66:45-51
pubmed: 28890208
J Comp Neurol. 2001 Jun 18;435(1):6-25
pubmed: 11370008
N Engl J Med. 2015 Dec 31;373(27):2654-62
pubmed: 26716917
Bioorg Med Chem Lett. 2003 Jan 6;13(1):111-3
pubmed: 12467628
J Neurosci. 2013 Jun 5;33(23):9743-51
pubmed: 23739971
Cell. 1999 Aug 20;98(4):437-51
pubmed: 10481909
Sleep. 2009 Jan;32(1):111-6
pubmed: 19189786
Sleep Med. 2020 Apr;68:97-109
pubmed: 32032921
Pharmacol Rev. 2012 Jul;64(3):389-420
pubmed: 22759794
Neuron. 2006 Feb 16;49(4):589-601
pubmed: 16476667
Neurosci Lett. 2011 Apr 20;494(1):57-60
pubmed: 21362456
Neuron. 2001 May;30(2):345-54
pubmed: 11394998
Nat Rev Neurosci. 2014 Nov;15(11):719-31
pubmed: 25301357
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4649-54
pubmed: 15070772
Sleep. 2021 Aug 13;44(8):
pubmed: 33609365
Neuroscience. 2003;119(4):1033-44
pubmed: 12831862
Neuron. 2017 Feb 22;93(4):747-765
pubmed: 28231463
J Neurosci. 2001 Oct 1;21(19):RC168
pubmed: 11567079
J Neurosci. 2013 Sep 4;33(36):14549-57
pubmed: 24005305
J Neurosci. 2003 Apr 15;23(8):3106-11
pubmed: 12716916

Auteurs

Hikari Yamamoto (H)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Yasuyuki Nagumo (Y)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Yukiko Ishikawa (Y)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Yoko Irukayama-Tomobe (Y)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Yukiko Namekawa (Y)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Tsuyoshi Nemoto (T)

School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Hiromu Tanaka (H)

School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Genki Takahashi (G)

School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Akihisa Tokuda (A)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Tsuyoshi Saitoh (T)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Hiroshi Nagase (H)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.

Hiromasa Funato (H)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan.

Masashi Yanagisawa (M)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas.
Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
R&D Center for Frontiers of MIRAI in Policy and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH