Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
08 2022
Historique:
received: 23 05 2021
accepted: 26 05 2022
pubmed: 26 7 2022
medline: 10 8 2022
entrez: 25 7 2022
Statut: ppublish

Résumé

CRISPR knockout (KO) screens have identified host factors regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Here, we conducted a meta-analysis of these screens, which showed a high level of cell-type specificity of the identified hits, highlighting the necessity of additional models to uncover the full landscape of host factors. Thus, we performed genome-wide KO and activation screens in Calu-3 lung cells and KO screens in Caco-2 colorectal cells, followed by secondary screens in four human cell lines. This revealed host-dependency factors, including AP1G1 adaptin and ATP8B1 flippase, as well as inhibitors, including mucins. Interestingly, some of the identified genes also modulate Middle East respiratory syndrome coronavirus (MERS-CoV) and seasonal human coronavirus (HCoV) (HCoV-NL63 and HCoV-229E) replication. Moreover, most genes had an impact on viral entry, with AP1G1 likely regulating TMPRSS2 activity at the plasma membrane. These results demonstrate the value of multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential targets for therapeutic interventions.

Identifiants

pubmed: 35879413
doi: 10.1038/s41588-022-01110-2
pii: 10.1038/s41588-022-01110-2
doi:

Types de publication

Journal Article Meta-Analysis Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1090-1102

Subventions

Organisme : NIAID NIH HHS
ID : R21 AI157835
Pays : United States

Commentaires et corrections

Type : UpdateOf
Type : UpdateOf

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).
pubmed: 12690091 doi: 10.1056/NEJMoa030747
Peiris, J. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325 (2003).
pubmed: 12711465 pmcid: 7112372 doi: 10.1016/S0140-6736(03)13077-2
Zhong, N. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 362, 1353–1358 (2003).
pubmed: 14585636 pmcid: 7112415 doi: 10.1016/S0140-6736(03)14630-2
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).
pubmed: 23075143 doi: 10.1056/NEJMoa1211721
van der Hoek, L. Human coronaviruses: what do they cause? Antivir. Ther. (Lond.) 12, 651–658 (2007).
doi: 10.1177/135965350701200S01.1
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).
pubmed: 32142651 pmcid: 7102627 doi: 10.1016/j.cell.2020.02.052
Hofmann, H. et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102, 7988–7993 (2005).
pubmed: 15897467 pmcid: 1142358 doi: 10.1073/pnas.0409465102
Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
pubmed: 14647384 pmcid: 7095016 doi: 10.1038/nature02145
Wu, K., Li, W., Peng, G. & Li, F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl Acad. Sci. USA 106, 19970–19974 (2009).
pubmed: 19901337 pmcid: 2785276 doi: 10.1073/pnas.0908837106
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
pubmed: 32015507 pmcid: 7095418 doi: 10.1038/s41586-020-2012-7
Matsuyama, S. et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658–12664 (2010).
pubmed: 20926566 pmcid: 3004351 doi: 10.1128/JVI.01542-10
Huang, I.-C. et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 281, 3198–3203 (2006).
pubmed: 16339146 doi: 10.1074/jbc.M508381200
Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020).
pubmed: 32221306 pmcid: 7100515 doi: 10.1038/s41467-020-15562-9
Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl Acad. Sci. USA 102, 11876–11881 (2005).
pubmed: 16081529 pmcid: 1188015 doi: 10.1073/pnas.0505577102
Koch, J. et al. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 40, e107821 (2021).
pubmed: 34159616 pmcid: 8365257
Baggen, J. et al. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat. Genet. https://doi.org/10.1038/s41588-021-00805-2 (2021).
doi: 10.1038/s41588-021-00805-2 pubmed: 33686287
Daniloski, Z. et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell 184, 92–105.e16 (2021).
pubmed: 33147445 doi: 10.1016/j.cell.2020.10.030
Schneider, W. M. et al. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. Cell 184, 120–132.e14 (2021).
pubmed: 33382968 doi: 10.1016/j.cell.2020.12.006
Wang, R. et al. Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses. Cell 184, 106–119.e14 (2021).
pubmed: 33333024 doi: 10.1016/j.cell.2020.12.004
Wei, J. et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 184, 76–91.e13 (2021).
pubmed: 33147444 doi: 10.1016/j.cell.2020.10.028
Zhu, Y. et al. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat. Commun. 12, 961 (2021).
pubmed: 33574281 pmcid: 7878750 doi: 10.1038/s41467-021-21213-4
Rebendenne, A. et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol https://doi.org/10.1128/JVI.02415-20 (2021).
doi: 10.1128/JVI.02415-20 pubmed: 33514628 pmcid: 8103705
DeWeirdt, P. C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat. Commun. 11, 752 (2020).
pubmed: 32029722 pmcid: 7005275 doi: 10.1038/s41467-020-14620-6
Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).
pubmed: 30575746 pmcid: 6303322 doi: 10.1038/s41467-018-07901-8
Camargo, S. M. R., Vuille-Dit-Bille, R. N., Meier, C. F. & Verrey, F. ACE2 and gut amino acid transport. Clin. Sci. (Lond) 134, 2823–2833 (2020).
doi: 10.1042/CS20200477
Pfaender, S. et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nat. Microbiol. 5, 1330–1339 (2020).
pubmed: 32704094 pmcid: 7916999 doi: 10.1038/s41564-020-0769-y
Chatterjee, M., van Putten, J. P. M. & Strijbis, K. Defensive properties of mucin glycoproteins during respiratory infections: relevance for SARS-CoV-2. mBio 11, e02374-20 (2020).
pubmed: 33184103 pmcid: 7663010 doi: 10.1128/mBio.02374-20
McAuley, J. L. et al. The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunol. 10, 1581–1593 (2017).
pubmed: 28327617 doi: 10.1038/mi.2017.16
Plante, J. A. et al. Mucin 4 protects female mice from coronavirus pathogenesis. Preprint at bioRxiv https://doi.org/10.1101/2020.02.19.957118 (2020).
Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848.e3 (2020).
pubmed: 32289263 pmcid: 7153529 doi: 10.1016/j.chom.2020.04.004
Gulbranson, D. R. et al. AAGAB controls AP2 adaptor assembly in clathrin-mediated endocytosis. Dev. Cell 50, 436–446.e5 (2019).
pubmed: 31353312 pmcid: 6702059 doi: 10.1016/j.devcel.2019.06.013
Wan, C. et al. AAGAB is an assembly chaperone regulating AP1 and AP2 clathrin adaptors. J. Cell Sci. https://doi.org/10.1242/jcs.258587 (2021).
doi: 10.1242/jcs.258587 pubmed: 34494650
Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020).
pubmed: 32591762 doi: 10.1038/s41587-020-0602-4
Rentsch, M. B. & Zimmer, G. A vesicular stomatitis virus Replicon-Based Bioassay for the Rapid and Sensitive Determination of Multi-Species Type I Interferon. PLoS One 6, e25858 (2011).
doi: 10.1371/journal.pone.0025858
Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, e20201181 (2020).
pubmed: 32692348 pmcid: 7372514 doi: 10.1084/jem.20201181
Kawase, M., Shirato, K., van der Hoek, L., Taguchi, F. & Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 86, 6537–6545 (2012).
pubmed: 22496216 pmcid: 3393535 doi: 10.1128/JVI.00094-12
Bertram, S. et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 87, 6150–6160 (2013).
pubmed: 23536651 pmcid: 3648130 doi: 10.1128/JVI.03372-12
Gierer, S. et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J. Virol. 87, 5502–5511 (2013).
pubmed: 23468491 pmcid: 3648152 doi: 10.1128/JVI.00128-13
Nakatsu, F., Hase, K. & Ohno, H. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond. Membranes (Basel) 4, 747–763 (2014).
doi: 10.3390/membranes4040747
Saccon, E. et al. Cell-type-resolved quantitative proteomics map of interferon response against SARS-CoV-2. iScience 24, 102420 (2021).
pubmed: 33898942 pmcid: 8056843 doi: 10.1016/j.isci.2021.102420
Stanifer, M. L. et al. Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Rep. 7, 32(1):107863 (2020).
Dhar, P. & McAuley, J. The role of the cell surface mucin MUC1 as a barrier to infection and regulator of inflammation. Front. Cell. Infect. Microbiol. 9, 117 (2019).
pubmed: 31069176 pmcid: 6491460 doi: 10.3389/fcimb.2019.00117
Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008).
pubmed: 19079178 pmcid: 7100821 doi: 10.1038/mi.2008.5
Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).
pubmed: 30089904 pmcid: 6522222 doi: 10.1038/s41586-018-0409-3
Biering, S. B. et al. Genome-wide, bidirectional CRISPR screens identify mucins as critical host factors modulating SARS-CoV-2 infection. Preprint at bioRxiv https://doi.org/10.1101/2021.04.22.44084 8 (2021).
Paulusma, C. C. & Oude Elferink, R. P. J. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim. Biophys. Acta 1741, 11–24 (2005).
pubmed: 15919184 doi: 10.1016/j.bbadis.2005.04.006
Stukalov, A. et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV.Nature 594, 246–252 (2021).
pubmed: 33845483 doi: 10.1038/s41586-021-03493-4
Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell Biol. 220, e202103105 (2021).
pubmed: 33929485 pmcid: 8077175 doi: 10.1083/jcb.202103105
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).
pubmed: 25494202 doi: 10.1038/nature14136
DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2021).
pubmed: 32661438 doi: 10.1038/s41587-020-0600-6
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
pubmed: 24336571 doi: 10.1126/science.1247005
Doyle, T. et al. The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry. Nat Microbiol 3, 1369–1376 (2018).
pubmed: 30478388 pmcid: 6329445 doi: 10.1038/s41564-018-0273-9
Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42, 3858–3863 (1982).
pubmed: 6286115
Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005).
pubmed: 15939869 pmcid: 1166622 doi: 10.1073/pnas.0503596102
Xie, X. et al. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nat. Commun. 11, 5214 (2020).
pubmed: 33060595 pmcid: 7567097 doi: 10.1038/s41467-020-19055-7
van den Worm, S. H. E. et al. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination. PLoS One 7, e32857 (2012).
pubmed: 22412934 pmcid: 3296753 doi: 10.1371/journal.pone.0032857
Almazán, F. et al. Engineering a replication-competent, propagation-defective middle east respiratory syndrome coronavirus as a vaccine candidate. mBio 4, e00650 (2013).
pubmed: 24023385 pmcid: 3774192 doi: 10.1128/mBio.00650-13
Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints12. American Journal of Epidemiology 27, 493–497 (1938).
doi: 10.1093/oxfordjournals.aje.a118408
Condor Capcha, J. M. et al. Generation of SARS-CoV-2 spike pseudotyped virus for viral entry and neutralization assays: a 1-week protocol. Front. Cardiovasc. Med. 7, 618651 (2020).
pubmed: 33521067 doi: 10.3389/fcvm.2020.618651
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur. Surveill. 25, 2000880 (2020).
Carbajo-Lozoya, J. et al. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 165, 112–117 (2012).
pubmed: 22349148 pmcid: 7114512 doi: 10.1016/j.virusres.2012.02.002
Veyrenche, N. et al. Diagnosis value of SARS-CoV-2 antigen/antibody combined testing using rapid diagnostic tests at hospital admission. J. Med. Virol. 93, 3069–3076 (2021).
pubmed: 33554363 pmcid: 8013599 doi: 10.1002/jmv.26855
Giovannini, D., Touhami, J., Charnet, P., Sitbon, M. & Battini, J.-L. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 3, 1866–1873 (2013).
pubmed: 23791524 doi: 10.1016/j.celrep.2013.05.035
Roy, P. PriyankaRoy5/SARS-CoV-2-meta-analysis: bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs (Zenodo, 2022). https://doi.org/10.5281/zenodo.6499838

Auteurs

Antoine Rebendenne (A)

IRIM, CNRS, Montpellier University, Montpellier, France.

Priyanka Roy (P)

Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Boris Bonaventure (B)

IRIM, CNRS, Montpellier University, Montpellier, France.

Ana Luiza Chaves Valadão (AL)

IRIM, CNRS, Montpellier University, Montpellier, France.

Lowiese Desmarets (L)

Lille University, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.

Mary Arnaud-Arnould (M)

IRIM, CNRS, Montpellier University, Montpellier, France.

Yves Rouillé (Y)

Lille University, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.

Marine Tauziet (M)

IRIM, CNRS, Montpellier University, Montpellier, France.

Donatella Giovannini (D)

IGMM, CNRS, Montpellier University, Montpellier, France.
Metafora Biosystems, Paris, France.

Jawida Touhami (J)

IGMM, CNRS, Montpellier University, Montpellier, France.
Laboratory of Excellence GR-Ex, Paris, France.

Yenarae Lee (Y)

Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Peter DeWeirdt (P)

Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Mudra Hegde (M)

Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Serge Urbach (S)

IGF, Montpellier University, CNRS, INSERM, Montpellier, France.

Khadija El Koulali (KE)

BCM, Montpellier University, CNRS, INSERM, Montpellier, France.

Francisco Garcia de Gracia (FG)

IRIM, CNRS, Montpellier University, Montpellier, France.

Joe McKellar (J)

IRIM, CNRS, Montpellier University, Montpellier, France.

Jean Dubuisson (J)

Lille University, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.

Mélanie Wencker (M)

CIRI, INSERM, CNRS, ENS-Lyon, Lyon University, Lyon, France.

Sandrine Belouzard (S)

Lille University, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.

Olivier Moncorgé (O)

IRIM, CNRS, Montpellier University, Montpellier, France.

John G Doench (JG)

Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA. jdoench@broadinstitute.org.

Caroline Goujon (C)

IRIM, CNRS, Montpellier University, Montpellier, France. caroline.goujon@irim.cnrs.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH