Simulating human gastrointestinal motility in dynamic in vitro models.
gastric emptying
gastrointestinal motility
gastrointestinal tract
in vitro model
in vitro-in vivo correlation
simulation
Journal
Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
26
03
2022
received:
11
09
2020
accepted:
22
06
2022
pubmed:
27
7
2022
medline:
1
10
2022
entrez:
26
7
2022
Statut:
ppublish
Résumé
The application of dynamic in vitro gastrointestinal (GI) models has grown in popularity to understand the impact of food structure and composition on human health. Given that GI motility is integral to digestion and absorption, a predictive in vitro model should faithfully replicate the motility patterns and motor functions in vivo. In this review, typical characteristics of gastric and small intestinal motility in humans as well as the biomechanical and hydrodynamic events pertinent to gut motility are summarized. The simulation of GI motility in the presently existing dynamic in vitro models is discussed from an engineering perspective and categorized into hydraulic, piston/probe-driven, roller-driven, pneumatic, and other systems. Each system and its representative models are evaluated in terms of their motility patterns, the key hydrodynamic characteristics concerning gut motility, their performance in simulating the key physiological events, and their ability to establish in vitro-in vivo correlations. Practical Application: The review paper provided useful information in the design of dynamic GI models and the simulation of human gastric and small intestinal motility which are important for understanding food and health.
Identifiants
pubmed: 35880687
doi: 10.1111/1541-4337.13007
doi:
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
3804-3833Informations de copyright
© 2022 The Authors. Comprehensive Reviews in Food Science and Food Safety published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.
Références
Abrahamsson, B., Pal, A., Sjöberg, M., Carlsson, M., Laurell, E., & Brasseur, J. G. (2005). A novel in vitro and numerical analysis of shear-induced drug release from extended-release tablets in the fed stomach. Pharmaceutical Research, 22(8), 1215-1226. https://doi.org/10.1007/s11095-005-5272-x
Ajaj, W., Lauenstein, T., Papanikolaou, N., Holtmann, G., Goehde, S. C., Ruehm, S. G., & Debatin, J. F. (2004). Real-time high-resolution MRI for the assessment of gastric motility: Pre- and postpharmacological stimuli. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 19(4), 453-458. https://doi.org/10.1002/jmri.20029
Alokaily, S., Feigl, K., & Tanner, F. X. (2019). Characterization of peristaltic flow during the mixing process in a model human stomach. Physics of Fluids, 31(10), 103105. https://doi.org/10.1063/1.5122665
Aloysio, L. G. (1967). Aloysio Luigi Galvani (1737-1798) discoverer of animal electricity. JAMA: The Journal of the American Medical Association, 201(8), 626-627. https://doi.org/10.1001/jama.201.8.626
Alvarez, W. C. (1922). Action currents in stomach and intestine. American Journal of Physiology-Legacy Content, 58(3), 476-493.
Arun, C. P. (2004). The importance of being asymmetric: The physiology of digesta propulsion on earth and in space. Annals of the New York Academy of Sciences, 1027(1), 74-84. https://doi.org/10.1196/annals.1324.008
Asencio, C. M., Gálvez-Arévalo, L. R., Almonacid, E. T., Landskron-Ramos, G., & Madrid-Silva, A. M. (2019). Evaluation of gastric motility through surface electrogastrography in critically ill septic patients. Comparison of metoclopramide and domperidone effects: A pilot randomized clinical trial. Revista de Gastroenterología de México (English Edition), 84(2), 149-157. https://doi.org/10.1016/j.rgmx.2018.03.007
Avvari, R. K. (2019). Biomechanics of the small intestinal contractions. In X. Qi & S. Koruth (Eds.), Digestive system-Recent advances (pp. 1-25). IntechOpen. https://doi.org/10.5772/intechopen.86539
Balestrieri, P., Ribolsi, M., Guarino, M. P. L., Emerenziani, S., Altomare, A., & Cicala, M. (2020). Nutritional aspects in inflammatory bowel diseases. Nutrients, 12(2), 372. https://doi.org/10.3390/nu12020372
Banerjee, S., Pal, A., & Fox, M. (2020). Volume and position change of the stomach during gastric accommodation and emptying: A detailed three-dimensional morphological analysis based ocn MRI. Neurogastroenterology & Motility, 32(8), e13865. https://doi.org/10.1111/nmo.13865
Barros, L., Retamal, C., Torres, H., Zúñiga, R. N., & Troncoso, E. (2016). Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility. Food Research International, 90, 216-225. https://doi.org/10.1016/j.foodres.2016.10.049
Barroso, E., Cueva, C., Peláez, C., Martínez-Cuesta, M. C., & Requena, T. (2015). Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT-Food Science and Technology, 61(2), 283-289. https://doi.org/10.1016/j.lwt.2014.12.014
Bauer, M., Morales-Orcajo, E., Klemm, L., Seydewitz, R., Fiebach, V., Siebert, T., & Böl, M. (2020). Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations. Acta Biomaterialia, 102, 83-99. https://doi.org/10.1016/j.actbio.2019.11.038
Bayliss, W. M., & Starling, E. H. (1899). The movements and innervation of the small intestine. The Journal of Physiology, 24, 99-143. https://doi.org/10.1113/jphysiol.1899.sp000752
Beaumont, W., & Osler, W. (1996). Experiments and observations on the gastric juice and the physiology of digestion. Dover.
Bellmann, S., Lelieveld, J., Gorissen, T., Minekus, M., & Havenaar, R. (2016). Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Research International, 88, 191-198. https://doi.org/10.1016/j.foodres.2016.01.030
Bellmann, S., Minekus, M., Sanders, P., Bosgra, S., & Havenaar, R. (2018). Human glycemic response curves after intake of carbohydrate foods are accurately predicted by combining in vitro gastrointestinal digestion with in silico kinetic modeling. Clinical Nutrition Experimental, 17, 8-22. https://doi.org/10.1016/j.yclnex.2017.10.003
Bellmann, S., Krishnan, S., de Graaf, A., de Ligt, R. A., Pasman, W. J., Minekus, M., & Havenaar, R. (2019). Appetite ratings of foods are predictable with an in vitro advanced gastrointestinal model in combination with an in silico artificial neural network. Food Research International, 122(December 2018), 77-86. https://doi.org/10.1016/j.foodres.2019.03.051
Berry, R., Miyagawa, T., Paskaranandavadivel, N., Du, P., Angeli, T. R., Trew, M. L., Windsor, J. A., Imai, Y., O'Grady, G., & Cheng, L. K. (2016). Functional physiology of the human terminal antrum defined by high resolution electrical mapping and computational modeling. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311(5), G895-G902. https://doi.org/10.1152/ajpgi.00255.2016
Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., Golding, M., Le Feunteun, S., Macierzanka, A., Menard, O., Miralles, B., Moscovici, A., Portmann, R., Recio, I., Rémond, D., Santé-Lhoutelier, V., Wooster, T. J., Lesmes, U., Mackie, A. R., & Dupont, D. (2018). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition, 58(13), 2239-2261. https://doi.org/10.1080/10408398.2017.1315362
Bornhorst, G. M., Chang, L. Q., Rutherfurd, S. M., Moughan, P. J., & Singh, R. P. (2013). Gastric emptying rate and chyme characteristics for cooked brown and white rice meals in vivo. Journal of the Science of Food and Agriculture, 93(12), 2900-2908. https://doi.org/10.1002/jsfa.6160
Bornhorst, G. M., Ferrua, M. J., Rutherfurd, S. M., Heldman, D. R., & Singh, R. P. (2013). Rheological properties and textural attributes of cooked brown and white rice during gastric digestion in vivo. Food Biophysics, 8(2), 137-150. https://doi.org/10.1007/s11483-013-9288-1
Brandstaeter, S., Fuchs, S. L., Aydin, R. C., & Cyron, C. J. (2019). Mechanics of the stomach: A review of an emerging field of biomechanics. GAMM Mitteilungen, 42(3), e201900001. https://doi.org/10.1002/gamm.201900001
Brener, W., Hendrix, T. R., & McHugh, P. R. (1983). Regulation of the gastric emptying of glucose. Gastroenterology, 85, 76-82.
Browning, K. N., & Travagli, R. A. (2019). Central control of gastrointestinal motility. Current Opinion in Endocrinology, Diabetes and Obesity, 26(1), 11-16. https://doi.org/10.1097/MED.0000000000000449
Camilleri, M. (1993). Study of human gastroduodenojejunal motility. Digestive Diseases and Sciences, 38(5), 785-794. https://doi.org/10.1007/BF01295902
Camilleri, M., & Linden, D. R. (2016). Measurement of gastrointestinal and colonic motor functions in humans and animals. Cellular and Molecular Gastroenterology and Hepatology, 2(4), 412-428. https://doi.org/10.1016/j.jcmgh.2016.04.003
Camps, G. (2020). The stomach, the mouth, or the food? The puzzle of gastric emptying. The Journal of Nutrition, 150(11), 2852-2854. https://doi.org/10.1093/jn/nxaa290
Cannon, W. B. (1898). The movements of the stomach studied by means of the Röntgen rays. American Journal of Physiology-Legacy Content, 1(3), 359-382. https://doi.org/10.1152/ajplegacy.1898.1.3.359
Cannon, W. B. (1902). The movements of the intestines studied by means of the Rontgen rays. American Journal of Physiology-Legacy Content, 6(5), 251-277. https://doi.org/10.1152/ajplegacy.1902.6.5.251
Cao, Y., Li, S., & Chen, J. (2021). Modeling better in vitro models for the prediction of nanoparticle toxicity: A review. Toxicology Mechanisms and Methods, 31, 1-17. https://doi.org/10.1080/15376516.2020.1828521
Carbone, F., Verschueren, S., Rotondo, A., & Tack, J. (2019). Duodenal nutrient exposure contributes to enhancing gastric accommodation. Neurogastroenterology & Motility, 31(11), e13697. https://doi.org/10.1111/nmo.13697
Carson, D. A., O'Grady, G., Du, P., Gharibans, A. A., & Andrews, C. N. (2020). Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterology Motility, 33, e14048. https://doi.org/10.1111/nmo.14048
Cassilly, D., Kantor, S., Knight, L. C., Maurer, A. H., Fisher, R. S., Semler, J., & Parkman, H. P. (2008). Gastric emptying of a non-digestible solid: Assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterology & Motility, 20(4), 311-319. https://doi.org/10.1111/j.1365-2982.2007.01061.x
Chen, J., Gaikwad, V., Holmes, M., Murray, B., Povey, M., Wang, Y., & Zhang, Y. (2011). Development of a simple model device for in vitro gastric digestion investigation. Food & Function, 2(3-4), 174-182. https://doi.org/10.1039/c0fo00159g
Chen, L., Xu, Y., Fan, T., Liao, Z., Wu, P., Wu, X., & Chen, X. D. (2016). Gastric emptying and morphology of a “near real” in vitro human stomach model (RD-IV-HSM). Journal of Food Engineering, 183, 1-8. https://doi.org/10.1016/j.jfoodeng.2016.02.025
Cheng, L. K., & Farrugia, G. (2013). New advances in gastrointestinal motility research. In L. Cheng, A. Pullan, & G. Farrugia (Eds.), Lecture notes in computational vision and biomechanics (pp. 1-6). Springer. https://doi.org/10.1007/978-94-007-6561-0_1
Cisse, F., Erickson, D. P., Hayes, A. M. R., Opekun, A. R., Nichols, B. L., & Hamaker, B. R. (2018). Traditional Malian solid foods made from sorghum and millet have markedly slower gastric emptying than rice, potato, or pasta. Nutrients, 10(2), 124. https://doi.org/10.3390/nu10020124
Code, C. F., & Marlett, J. A. (1975). The interdigestive myo-electric complex of the stomach and small bowel of dogs. cccc, 246(2), 289-309. https://doi.org/10.1113/jphysiol.1975.sp010891
Chang, E. B., & Leung, P. S. (2014). Gastrointestinal motility. In P. Leung (Eds.), The gastrointestinal system: Gastrointestinal, nutritional and hepatobiliary physiology (pp. 35-62). Springer. https://doi.org/10.1007/978-94-017-8771-0_2
De Cuyper, A., Hesta, M., Tibosch, S., Wanke, C., Clauss, M., & Janssens, G. P. J. (2018). How does dietary particle size affect carnivore gastrointestinal transit: A dog model. Journal of Animal Physiology and Animal Nutrition, 102(2), e615-e622. https://doi.org/10.1111/jpn.12803
Dang, Y., Liu, Y., Hashem, R., Bhattacharya, D., Allen, J., Stommel, M., Cheng, L. K., & Xu, W. (2021). SoGut: A soft robotic gastric simulator. Soft Robotics, 8(3), 273-283. https://doi.org/10.1089/soro.2019.0136
Deane, A. M., Chapman, M. J., Blaser, A. R., McClave, S. A., & Emmanuel, A. (2019). Pathophysiology and treatment of gastrointestinal motility disorders in the acutely ill. Nutrition in Clinical Practice, 34(1), 23-36. https://doi.org/10.1002/ncp.10199
Desipio, J., Friedenberg, F. K., Korimilli, A., Richter, J. E., Parkman, H. P., & Fisher, R. S. (2007). High-resolution solid-state manometry of the antropyloroduodenal region. Neurogastroenterology & Motility, 19(3), 188-195. https://doi.org/10.1111/j.1365-2982.2006.00866.x
Dikeman, C. L., Barry, K. A., Murphy, M. R., & Fahey, G. C. (2007). Diet and measurement techniques affect small intestinal digesta viscosity among dogs. Nutrition Research, 27(1), 56-65. https://doi.org/10.1016/j.nutres.2006.12.005
Du, P., O'Grady, G., Davidson, J. B., Cheng, L. K., & Pullan, A. J. (2010). Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Critical Reviews in Biomedical Engineering, 38(3), 225-254.
Du, X., Allwood, G., Webberley, K. M., Osseiran, A., & Marshall, B. J. (2018). Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device. Sensors, 18(12), 4240. https://doi.org/10.3390/s18124240
Dupont, D., Alric, M., Blanquet-Diot, S., Bornhorst, G., Cueva, C., Deglaire, A., Denis, S., Ferrua, M., Havenaar, R., Lelieveld, J., Mackie, A. R., Marzorati, M., Menard, O., Minekus, M., Miralles, B., Recio, I., & Van den Abbeele, P. (2019). Can dynamic in vitro digestion systems mimic the physiological reality? Critical Reviews in Food Science and Nutrition, 59(10), 1546-1562. https://doi.org/10.1080/10408398.2017.1421900
Elashoff, J. D., Reedy, T. J., & Meyer, J. H. (1982). Analysis of gastric emptying data. Gastroenterology, 83(6), 1306-1312. https://doi.org/10.1016/S0016-5085(82)80145-5
Febo-Rodriguez, L., Chumpitazi, B. P., Sher, A. C., & Shulman, R. J. (2021). Gastric accommodation: Physiology, diagnostic modalities, clinical relevance, and therapies. Neurogastroenterology & Motility, 33(12), 1-15. https://doi.org/10.1111/nmo.14213
Ferrua, M. J., Xue, Z., & P Singh, R. (2014). On the kinematics and efficiency of advective mixing during gastric digestion-A numerical analysis. Journal of Biomechanics, 47(15), 3664-3673. https://doi.org/10.1016/j.jbiomech.2014.09.033
Fonseca, M. R. J. (2012). An engineering understanding of the small intestine [doctoral dissertation]. University of Birmingham, Birmingham, England.
Foong, D., Zhou, J., Zarrouk, A., Ho, V., & O'Connor, M. D. (2020). Understanding the biology of human interstitial cells of Cajal in gastrointestinal motility. International Journal of Molecular Sciences, 21(12), 1-18. https://doi.org/10.3390/ijms21124540
Fullard, L. A., Lammers, W. J., & Ferrua, M. J. (2015). Advective mixing due to longitudinal and segmental contractions in the ileum of the rabbit. Journal of Food Engineering, 160, 1-10. https://doi.org/10.1016/j.jfoodeng.2015.03.017
Griffith, G. H., Owen, G. M., Kirkman, S., & Shields, R. (1966). Measurement of rate of gastric emptying using chromium-51. Lancet, 1, 1244-1245.
Ghoshal, U. C. (2020). Small intestinal motility disorders. Clinical and basic neurogastroenterology and motility (pp. 319-329). Academic Press.
Goyal, R. K., Guo, Y., & Mashimo, H. (2019). Advances in the physiology of gastric emptying. Neurogastroenterology & Motility, 31(4), e13546. https://doi.org/10.1111/nmo.13546
Gribble, F. M., Reimann, F., & Roberts, G. P. (2018). Gastrointestinal hormones. Physiology of the Gastrointestinal Tract, 2018, 31-70. https://doi.org/10.1016/B978-0-12-809954-4.00002-5
Grivel, M. L., & Ruckebusch, Y. (1972). The propagation of segmental contractions along the small intestine. The Journal of Physiology, 227(2), 611-625. https://doi.org/10.1113/jphysiol.1972.sp010050
Guerra, A., Denis, S., le Goff, O., Sicardi, V., François, O., Yao, A. F., Garrait, G., Manzi, A. P., Beyssac, E., Alric, M., & Blanquet-Diot, S. (2016). Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnology and Bioengineering, 113(6), 1325-1335. https://doi.org/10.1002/bit.25890
Halawi, H., Camilleri, M., Acosta, A., Vazquez-Roque, M., Oduyebo, I., Burton, D., Busciglio, I., & Zinsmeister, A. R. (2017). Relationship of gastric emptying or accommodation with satiation, satiety, and postprandial symptoms in health. American Journal of Physiology - Gastrointestinal and Liver Physiology, 313(5), G442-G447. https://doi.org/10.1152/ajpgi.00190.2017
Helander, H. F., & Fändriks, L. (2014). Surface area of the digestive tract-revisited. Scandinavian Journal of Gastroenterology, 49(6), 681-689. https://doi.org/10.3109/00365521.2014.898326
Hervik, A. K., & Svihus, B. (2019). The role of fiber in energy balance. Journal of Nutrition and Metabolism, 2019, 4983657. https://doi.org/10.1155/2019/4983657
Hopgood, M., Reynolds, G., & Barker, R. (2018). Using computational fluid dynamics to compare shear rate and turbulence in the TIM-automated gastric compartment with USP apparatus II. Journal of Pharmaceutical Sciences, 107(7), 1911-1919. https://doi.org/10.1016/j.xphs.2018.03.019
Hsu, J. C., Nieves, L. M., Betzer, O., Sadan, T., Noël, P. B., Popovtzer, R., & Cormode, D. P. (2020). Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12(6), 1-26. https://doi.org/10.1002/wnan.1642
Huang, Y., Yu, Q., Chen, Z., Wu, W., Zhu, Q., & Lu, Y. (2021). In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharmaceutica Sinica B, 11, 2469-2487. https://doi.org/10.1016/j.apsb.2021.03.025
Imam, H., Sanmiguel, C., Larive, B., Bhat, Y., & Soffer, E. (2004). Study of intestinal flow by combined videofluoroscopy, manometry, and multiple intraluminal impedance. American Journal of Physiology-Gastrointestinal and Liver Physiology, 286(2), G263-G270. https://doi.org/10.1152/ajpgi.00228.2003
Ishida, S., Miyagawa, T., O'Grady, G., Cheng, L. K., & Imai, Y. (2019). Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: A simulation study. Journal of the Royal Society Interface, 16(157), 20190266. https://doi.org/10.1098/rsif.2019.0266
Janssen, P., Vanden Berghe, P., Verschueren, S., Lehmann, A., Depoortere, I., & Tack, J. (2011). The role of gastric motility in the control of food intake. Alimentary Pharmacology and Therapeutics, 33(8), 880-894. https://doi.org/10.1111/j.1365-2036.2011.04609.x
Jeffrey, B., Udaykumar, H. S., & Schulze, K. S. (2003). Flow fields generated by peristaltic reflex in isolated guinea pig ileum: Impact of contraction depth and shoulders. American Journal of Physiology-Gastrointestinal and Liver Physiology, 285(5), G907-G918. https://doi.org/10.1152/ajpgi.00062.2003
Kamba, M., Seta, Y., Kusai, A., Ikeda, M., & Nishimura, K. (2000). A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. International Journal of Pharmaceutics, 208(1-2), 61-70. https://doi.org/10.1016/S0378-5173(00)00552-4
Keppler, S., O'Meara, S., Bakalis, S., Fryer, P. J., & Bornhorst, G. M. (2020). Characterization of individual particle movement during in vitro gastric digestion in the human gastric simulator. Journal of Food Engineering, 264, 109674. https://doi.org/10.1016/j.jfoodeng.2019.07.021
Kerlin, P., Zinsmeister, A., & Phillips, S. (1982). Relationship of motility to flow of contents in the human small intestine. Gastroenterology, 82(4), 701-706. https://doi.org/10.1016/0016-5085(82)90314-6
Khurana, I., & Khurana, A. (2015). Textbook of medical physiology e-book. Elsevier Health Sciences.
Kim, H. J., Li, H., Collins, J. J., & Ingber, D. E. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proceedings of the National Academy of Sciences of the United States of America, 113(1), E7-E15. https://doi.org/10.1073/pnas.1522193112
Knight, J., Williams, N., & Nigam, Y. (2019). Gastrointestinal tract 2: The structure and function of the stomach. Nursing Times, 115, 43-47. https://doi.org/10.1016/B0-12-226694-3/00148-4
Kong, F., & Singh, R. P. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 75(9), E627-E635. https://doi.org/10.1111/j.1750-3841.2010.01856.x
Koziolek, M., Grimm, M., Bollmann, T., Schäfer, K. J., Blattner, S. M., Lotz, R., Boeck, G., & Weitschies, W. (2019). Characterization of the GI transit conditions in Beagle dogs with a telemetric motility capsule. European Journal of Pharmaceutics and Biopharmaceutics, 136(January), 221-230. https://doi.org/10.1016/j.ejpb.2019.01.026
Kozu, H., Kobayashi, I., Nakajima, M., Neves, M. A., Uemura, K., Isoda, H., & Ichikawa, S. (2017). Mixing characterization of liquid contents in human gastric digestion simulator equipped with gastric secretion and emptying. Biochemical Engineering Journal, 122, 85-90. https://doi.org/10.1016/j.bej.2016.10.013
Kozu, H., Kobayashi, I., Nakajima, M., Uemura, K., Sato, S., & Ichikawa, S. (2010). Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics, 5(4), 330-336. https://doi.org/10.1007/s11483-010-9183-y
Kozu, H., Kobayashi, I., Neves, M. A., Nakajima, M., Uemura, K., Sato, S., & Ichikawa, S. (2014a). PIV and CFD studies on analyzing intragastric flow phenomena induced by peristalsis using a human gastric flow simulator. Food & Function, 5(8), 1839-1847. https://doi.org/10.1039/c4fo00041b
Kozu, H., Nakata, Y., Nakajima, M., Neves, M. A., Uemura, K., Sato, S., Kobayashi, I., & Ichikawa, S. (2014b). Development of a human gastric digestion simulator equipped with peristalsis function for the direct observation and analysis of the food digestion process. Food Science and Technology Research, 20(2), 225-233. https://doi.org/10.3136/fstr.20.225
Kwiatek, M. A., Steingoetter, A., Pal, A., Menne, D., Brasseur, J. G., Hebbard, G. S., Boesiger, P., Thumshirn, M., Fried, M., & Schwizer, W. (2006). Quantification of distal antral contractile motility in healthy human stomach with magnetic resonance imaging. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 24(5), 1101-1109. https://doi.org/10.1002/jmri.20738
Ladopoulos, T., Giannaki, M., Alexopoulou, C., Proklou, A., Pediaditis, E., & Kondili, E. (2018). Gastrointestinal dysmotility in critically ill patients. Annals of Gastroenterology, 31, 273-281. https://doi.org/10.20524/aog.2018.0250
Laulicht, B., Tripathi, A., Schlageter, V., Kucera, P., & Mathiowitz, E. (2010). Understanding gastric forces calculated from high-resolution pill tracking. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8201-8206. https://doi.org/10.1073/pnas.1002292107
Li, C., & Jin, Y. (2021). A CFD model for investigating the dynamics of liquid gastric contents in human-stomach induced by gastric motility. Journal of Food Engineering, 296, 110461. https://doi.org/10.1016/j.jfoodeng.2020.110461
Li, C., Yu, W., Wu, P., & Chen, X. D. (2020). Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends in Food Science and Technology, 96, 114-126. https://doi.org/10.1016/j.tifs.2019.12.015
Li, Y., Fortner, L., & Kong, F. (2019). Development of a gastric simulation model (GSM) incorporating gastric geometry and peristalsis for food digestion study. Food Research International, 125, 108598. https://doi.org/10.1016/j.foodres.2019.108598
Li, Z. t., Zhu, L., Zhang, W. l., Zhan, X. b., & Gao, M. j. (2020). New dynamic digestion model reactor that mimics gastrointestinal function. Biochemical Engineering Journal, 154, 107431. https://doi.org/10.1016/j.bej.2019.107431
Lim, Y. F., De Loubens, C., Love, R. J., Lentle, R. G., & Janssen, P. W. M. (2015). Flow and mixing by small intestine villi. Food & Function, 6(6), 1787-1795. https://doi.org/10.1039/c5fo00285k
Lim, Y. F., Lentle, R. G., Janssen, P. W. M., Williams, M. A. K., De Loubens, C., Mansel, B. W., & Chambers, P. (2014). Determination of villous rigidity in the distal ileum of the possum (Trichosurus vulpecula). PLoS One, 9(6), e100140. https://doi.org/10.1371/journal.pone.0100140
Lindner, M., Laporte, A., Block, S., Elomaa, L., & Weinhart, M. (2021). Physiological shear stress enhances differentiation, mucus-formation and structural 3d organization of intestinal epithelial cells in vitro. Cells, 10(8), 1-19. https://doi.org/10.3390/cells10082062
Liu, W., Fu, D., Zhang, X., Chai, J., Tian, S., & Han, J. (2019). Development and validation of a new artificial gastric digestive system. Food Research International, 122, 183-190. https://doi.org/10.1016/j.foodres.2019.04.015
Liu, W., Jin, Y., Wilde, P. J., Hou, Y., Wang, Y., & Han, J. (2020). Mechanisms, physiology, and recent research progress of gastric emptying. Critical Reviews in Food Science and Nutrition, 61, 2742-2755. https://doi.org/10.1080/10408398.2020.1784841
Loubens, C. D. E., Lentle, R. G., Love, R. J., Hulls, C., & Janssen, P. W. M. (2013). Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig. Journal of the Royal Society Interface, 10(83), 20130027. https://doi.org/10.1098/rsif.2013.0027
Love, R. J., Lentle, R. G., Asvarujanon, P., Hemar, Y., & Stafford, K. J. (2013). An expanded finite element model of the intestinal mixing of digesta. Food Digestion, 4(1), 26-35. https://doi.org/10.1007/s13228-012-0017-x
Low, D. Y., Pluschke, A. M., Gerrits, W. J. J., Zhang, D., Shelat, K. J., Gidley, M. J., & Williams, B. A. (2020). Cereal dietary fibres influence retention time of digesta solid and liquid phases along the gastrointestinal tract. Food Hydrocolloids, 104, 105739. https://doi.org/10.1016/j.foodhyd.2020.105739
MacFarlane, N. G. (2018). Gut motility and its control. Anaesthesia and Intensive Care Medicine, 19(3), 133-135. https://doi.org/10.1016/j.mpaic.2018.01.002
Malagelada, J. R. (1990). Where do we stand on gastric motility? Scandinavian Journal of Gastroenterology, 25(Sup175), 42-51. https://doi.org/10.3109/00365529009093126
Maqbool, S., Parkman, H. P., & Friedenberg, F. K. (2009). Wireless capsule motility: Comparison of the smartPill® GI monitoring system with scintigraphy for measuring whole gut transit. Digestive Diseases and Sciences, 54(10), 2167-2174. https://doi.org/10.1007/s10620-009-0899-9
Marciani, L., Gowland, P. A., Fillery-Travis, A., Manoj, P., Wright, J., Smith, A., Young, P., Moore, R., & Spiller, R. C. (2001). Assessment of antral grinding of a model solid meal with echo-planar imaging. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(5), G844-G849. https://doi.org/10.1152/ajpgi.2001.280.5.g844
McQuilken, S. A. (2021). Gut motility and its control. Anaesthesia and Intensive Care Medicine, 22(5), 339-342. https://doi.org/10.1016/j.mpaic.2021.04.002
Melville, J., Macagno, E., & Christensen, J. (1975). Longitudinal contractions in the duodenum: Their fluid mechanical function. American Journal of Physiology, 228(6), 1887-1892. https://doi.org/10.1152/ajplegacy.1975.228.6.1887
Miller, J. L. (1914). The movements of the villi of the small intestine. Journal of the American Medical Association, 63(24), 2137-2138. https://doi.org/10.1001/jama.1914.02570240055024
Minekus, M., Marteau, P., Havenaar, R., & Veld, J. H. H. I. T. (1995). A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals, 23(2), 197-209. https://doi.org/10.1177/026119299502300205
Miralles, B., del Barrio, R., Cueva, C., Recio, I., & Amigo, L. (2018). Dynamic gastric digestion of a commercial whey protein concentrate. Journal of the Science of Food and Agriculture, 98(5), 1873-1879. https://doi.org/10.1002/jsfa.8668
Moxon, T. E., Gouseti, O., & Bakalis, S. (2016). In silico modelling of mass transfer & absorption in the human gut. Journal of Food engineering, 176, 110-120. https://doi.org/10.1016/j.jfoodeng.2015.10.019
Müller, M., Canfora, E. E., & Blaak, E. E. (2018). Gastrointestinal transit time, glucose homeostasis and metabolic health: Modulation by dietary fibers. Nutrients, 10(3), 275. https://doi.org/10.3390/nu10030275
Nadia, J., Bronlund, J., Singh, R. P., Singh, H., & Bornhorst, G. M. (2021). Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2660-2698. https://doi.org/10.1111/1541-4337.12749
Nightingale, J. M., Paine, P., McLaughlin, J., Emmanuel, A., Martin, J. E., & Lal, S. (2020). The management of adult patients with severe chronic small intestinal dysmotility. Gut, 69(12), 2074-2092. https://doi.org/10.1136/gutjnl-2020-321631
Pal, A., Indireshkumar, K., Schwizer, W., Abrahamsson, B., Fried, M., & Brasseur, J. G. (2004). Gastric flow and mixing studied using computer simulation. Proceedings of the Royal Society B: Biological Sciences, 271(1557), 2587-2594. https://doi.org/10.1098/rspb.2004.2886
Pal, A., Brasseur, J. G., & Abrahamsson, B. (2007). A stomach road or “Magenstrasse” for gastric emptying. Journal of Biomechanics, 40(6), 1202-1210. https://doi.org/10.1016/j.jbiomech.2006.06.006
Palmada, N., Cater, J. E., Cheng, L. K., & Suresh, V. (2020). Modelling flow and mixing in the proximal small intestine. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2020, 2496-2499. https://doi.org/10.1109/EMBC44109.2020.9176688
Pimentel, M., Saad, R. J., Long, M. D., & Rao, S. S. (2020). ACG clinical guideline: Small intestinal bacterial overgrowth. Official Journal of the American College of Gastroenterology| ACG, 115(2), 165-178. http://10.14309/ajg.0000000000000501
Pritchard, S. E., Paul, J., Major, G., Marciani, L., Gowland, P. A., Spiller, R. C., & Hoad, C. L. (2017). Assessment of motion of colonic contents in the human colon using MRI tagging. Neurogastroenterology and Motility, 29(9), 1-8. https://doi.org/10.1111/nmo.13091
Ramon y Cajal, S. (1911). Histologie du système nerveux de l'homme et des vertébrés. Maloine, Paris, 2, 153-173. https://doi.org/10.1097/00005072-199809000-00011
Shafik, A., El Sibai, O., & Shafik, A. A. (2007). Study of the duodenal contractile activity during antral contractions. World Journal of Gastroenterology: WJG, 13(18), 2600. https://doi.org/10.3748/wjg.v13.i18.2600
Salas Bringas, C., Tysse, M., Stenberg, S., Devold, T. G., Vegarud, G. E., Comi, I., Ulleberg, E. K., Rukke, E., & Schüller, R. B. (2015). In vitro dynamic model of the stomach and small intestine for Liquid Foods With rheological monitoring-First prototype. Annual Transactions-The Nordic Rheology Society, 23, 207-214. http://www.sik.se/nrs/
Siegel, J. A., Urbain, J. L., Adler, L. P., Charkes, N. D., Maurer, A. H., Krevsky, B., Knight, L. C., Fisher, R. S., & Malmud, L. S. (1988). Biphasic nature of gastric emptying. Gut, 29(1), 85-89. https://doi.org/10.1136/gut.29.1.85
Somaratne, G., Reis, M. M., Ferrua, M. J., Ye, A., Nau, F., Floury, J., Dupont, D., Singh, R. P., & Singh, J. (2019). Mapping the spatiotemporal distribution of acid and moisture in food structures during gastric juice diffusion using hyperspectral imaging. Journal of Agricultural and Food Chemistry, 67(33), 9399-9410. https://doi.org/10.1021/acs.jafc.9b02430
Steinert, R. E., Feinle-Bisset, C., Asarian, L., Horowitz, M., Beglinger, C., & Geary, N. (2017). Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiological Reviews, 97(1), 411-463. https://doi.org/10.1152/physrev.00031.2014
Steinsvik, E. K., Hatlebakk, J. G., Hausken, T., Nylund, K., & Gilja, O. H. (2021). Ultrasound imaging for assessing functions of the GI tract. Physiological Measurement, 42(2), 024002. https://doi.org/10.1088/1361-6579/abdad7
Szurszewski, J. H. (1969). A migrating electric complex of canine small intestine. The American Journal of Physiology, 217(6), 1757-1763. https://doi.org/10.1152/ajplegacy.1969.217.6.1757
Tharakan, A., Norton, I. T., Fryer, P. J., & Bakalis, S. (2010). Mass transfer and nutrient absorption in a simulated model of small intestine. Journal of Food Science, 75(6), E339-E346. https://doi.org/10.1111/j.1750-3841.2010.01659.x
The Food and Drug Administration, U.S. (1997). Extended release solid dosage forms: Development, evaluation and application of in vitro/in vivo correlations. https://www.fda.gov/media/70939/download
Tran Do, D. H., Kong, F., Penet, C., Winetzky, D., & Gregory, K. (2016). Using a dynamic stomach model to study efficacy of supplemental enzymes during simulated digestion. LWT-Food Science and Technology, 65, 580-588. https://doi.org/10.1016/j.lwt.2015.08.054
Tripathi, D., & Anwar Bég, O. (2014). Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine. Mathematical Biosciences, 248, 67-77. https://doi.org/10.1016/j.mbs.2013.11.006
Vantrappen, G., Janssens, J., Hellemans, J., & Ghoos, Y. (1977). The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. Journal of Clinical Investigation, 59(6), 1158-1166. https://doi.org/10.1172/JCI108740
Vardakou, M., Mercuri, A., Barker, S. A., Craig, D. Q. M., Faulks, R. M., & Wickham, M. S. J. (2011). Achieving antral grinding forces in biorelevant in vitro models: Comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech, 12(2), 620-626. https://doi.org/10.1208/s12249-011-9616-z
Vaz, M., Raj, T., & Kurpad, A. (2020). Guyton & Hall textbook of medical physiology (3rd ed.). Elsevier Health Sciences.
Venema, K., Verhoeven, J., Verbruggen, S., Espinosa, L., & Courau, S. (2019). Probiotic survival during a multi-layered tablet development as tested in a dynamic, computer-controlled in vitro model of the stomach and small intestine (TIM-1). Letters in Applied Microbiology, 69(5), 325-332. https://doi.org/10.1111/lam.13211
Verwei, M., Minekus, M., Zeijdner, E., Schilderink, R., & Havenaar, R. (2016). Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. International Journal of Pharmaceutics, 498(1-2), 178-186. https://doi.org/10.1016/j.ijpharm.2015.11.048
Vijayvargiya, P., Jameie-Oskooei, S., Camilleri, M., Chedid, V., Erwin, P. J., & Murad, M. H. (2018). Association between delayed gastric emptying and upper gastrointestinal symptoms: A systematic review and meta-analysis. Gut, 804-813. https://doi.org/10.1136/gutjnl-2018-316405
Wagh, P. K., Ahirrao, S. P., & Kshirsagar, S. J. (2018). Gastroretentive drug delivery systems: A review on expandable system. Indian Journal of Drugs, 6(3), 142-151. www.drugresearch.in
Wang, J., Wu, P., Liu, M., Liao, Z., Wang, Y., Dong, Z., & Chen, X. D. (2019). An advanced near real dynamic: In vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice. Food & Function, 10(5), 2914-2925. https://doi.org/10.1039/c8fo02586j
Wang, Y., & Brasseur, J. G. (2017). Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions. Physical Review E, 95(6), 1-8. https://doi.org/10.1103/PhysRevE.95.062412
Wang, Z., Kozu, H., Uemura, K., Kobayashi, I., & Ichikawa, S. (2021). Effect of hydrogel particle mechanical properties on their disintegration behavior using a gastric digestion simulator. Food Hydrocolloids, 110, 106166. https://doi.org/10.1016/j.foodhyd.2020.106166
Wickham, M. J. S., Faulks, R. M., Mann, J., & Mandalari, G. (2012). The design, operation, and application of a dynamic gastric model. Dissolution Technology, 19(3), 15-22. https://doi.org/10.14227/DT190312P15
Wong, A., Yusuf, G. T., & Malbrain, M. L. N. G. (2021). Future developments in the imaging of the gastrointestinal tract: The role of ultrasound. Current Opinion in Critical Care, 27(2), 147-156. https://doi.org/10.1097/MCC.0000000000000815
Wright, N. D., Kong, F., Williams, B. S., & Fortner, L. (2016). A human duodenum model (HDM) to study transport and digestion of intestinal contents. Journal of Food Engineering, 171, 129-136. https://doi.org/10.1016/j.jfoodeng.2015.10.013
Xie, M. (2019). A study of the role of microRNAs in gastric cancer: the effect of miR-140-5p dysregulation in the expression of MDM2 in p53-dependent gastric cancer subtypes [doctoral dissertation]. Cardiff University, Wales, UK.
Yamaguchi, T., Ishikawa, T., & Imai, Y. (Eds.). (2018). Biomechanics of the digestive system. Integrated nano-biomechanics (pp. 71-99). Elsevier. https://doi.org/10.1016/B978-0-323-38944-0.00003-6
Zhong, C., & Langrish, T. (2020). A comparison of different physical stomach models and an analysis of shear stresses and strains in these systems. Food Research International, 135, 109296. https://doi.org/10.1016/j.foodres.2020.109296