ZAP isoforms regulate unfolded protein response and epithelial- mesenchymal transition.
Epithelial-Mesenchymal Transition
/ genetics
Heterogeneous Nuclear Ribonucleoprotein A1
/ metabolism
Heterogeneous-Nuclear Ribonucleoproteins
/ genetics
Humans
Polypyrimidine Tract-Binding Protein
/ genetics
Protein Isoforms
/ genetics
RNA, Messenger
/ metabolism
RNA, Viral
/ metabolism
RNA-Binding Proteins
/ genetics
Ribonucleoproteins, Small Nuclear
/ metabolism
Unfolded Protein Response
alternative splicing
epithelial-mesenchymal transition
splice-switching antisense oligonucleotides
unfolded protein response
zinc finger antiviral protein
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
02 08 2022
02 08 2022
Historique:
entrez:
26
7
2022
pubmed:
27
7
2022
medline:
29
7
2022
Statut:
ppublish
Résumé
Human ZAP inhibits many viruses, including HIV and coronaviruses, by binding to viral RNAs to promote their degradation and/or translation suppression. However, the regulatory role of ZAP in host mRNAs is largely unknown. Two major alternatively spliced ZAP isoforms, the constitutively expressed ZAPL and the infection-inducible ZAPS, play overlapping yet different antiviral and other roles that need further characterization. We found that the splicing factors hnRNPA1/A2, PTBP1/2, and U1-snRNP inhibit ZAPS production and demonstrated the feasibility to modulate the ZAPL/S balance by splice-switching antisense oligonucleotides in human cells. Transcriptomic analysis of ZAP-isoform-specific knockout cells revealed uncharacterized host mRNAs targeted by ZAPL/S with broad cellular functions such as unfolded protein response (UPR), epithelial-mesenchymal transition (EMT), and innate immunity. We established that endogenous ZAPL and ZAPS localize to membrane compartments and cytosol, respectively, and that the differential localization correlates with their target-RNA specificity. We showed that the ZAP isoforms regulated different UPR branches under resting and stress conditions and affected cell viability during ER stress. We also provided evidence for a different function of the ZAP isoforms in EMT-related cell migration, with effects that are cell-type dependent. Overall, this study demonstrates that the competition between splicing and IPA is a potential target for the modulation of the ZAPL/S balance, and reports new cellular transcripts and processes regulated by the ZAP isoforms.
Identifiants
pubmed: 35881805
doi: 10.1073/pnas.2121453119
pmc: PMC9351355
doi:
Substances chimiques
Heterogeneous Nuclear Ribonucleoprotein A1
0
Heterogeneous-Nuclear Ribonucleoproteins
0
PTBP1 protein, human
0
Protein Isoforms
0
RNA, Messenger
0
RNA, Viral
0
RNA-Binding Proteins
0
Ribonucleoproteins, Small Nuclear
0
SNRNP35 protein, human
0
ZC3HAV1 protein, human
0
hnRNPA1 protein, human
0
Polypyrimidine Tract-Binding Protein
139076-35-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2121453119Références
Nature. 2011 Apr 28;472(7344):481-5
pubmed: 21478870
J Virol. 2003 Nov;77(21):11555-62
pubmed: 14557641
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15834-9
pubmed: 21876179
Nat Struct Mol Biol. 2012 Mar 11;19(4):430-5
pubmed: 22407013
Mol Cell. 2011 Sep 16;43(6):927-39
pubmed: 21925381
Nat Commun. 2017 Nov 21;8(1):1638
pubmed: 29158484
Science. 2002 Sep 6;297(5587):1703-6
pubmed: 12215647
Nat Rev Mol Cell Biol. 2020 Aug;21(8):421-438
pubmed: 32457508
Cell Physiol Biochem. 2018;49(3):1007-1018
pubmed: 30196292
Cell. 2019 Jun 13;177(7):1797-1813.e18
pubmed: 31104839
Nat Commun. 2014 Nov 10;5:5362
pubmed: 25382312
J Virol. 2004 Dec;78(23):12781-7
pubmed: 15542630
Nucleic Acids Res. 2002 Jan 1;30(1):207-10
pubmed: 11752295
Nat Immunol. 2011 Jan;12(1):37-44
pubmed: 21102435
PLoS Genet. 2008 Jan;4(1):e21
pubmed: 18225958
PLoS One. 2014 Dec 29;9(12):e114931
pubmed: 25545659
J Gen Virol. 2014 Apr;95(Pt 4):816-822
pubmed: 24457973
Nat Commun. 2021 Dec 10;12(1):7193
pubmed: 34893599
Mol Biol Cell. 2007 Dec;18(12):5048-59
pubmed: 17898077
J Biol Chem. 2010 Feb 26;285(9):6080-90
pubmed: 20048147
Nat Immunol. 2019 Dec;20(12):1610-1620
pubmed: 31740798
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11085-90
pubmed: 23776219
PLoS Pathog. 2020 Sep 4;16(9):e1008844
pubmed: 32886716
Aging (Albany NY). 2021 Jul 28;13(14):18482-18497
pubmed: 34319912
Trends Mol Med. 2015 Jun;21(6):373-84
pubmed: 25851173
mBio. 2021 May 4;12(3):
pubmed: 33947766
Dev Cell. 2018 Jun 18;45(6):681-695.e4
pubmed: 29920274
J Clin Invest. 2009 Jun;119(6):1429-37
pubmed: 19487819
J Virol. 2019 Aug 28;93(18):
pubmed: 31118263
Nucleic Acids Res. 2019 Jan 8;47(D1):D203-D211
pubmed: 30239819
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12379-84
pubmed: 23836649
Mol Cell. 2021 Jul 1;81(13):2838-2850.e6
pubmed: 33989516
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30687-30698
pubmed: 33184176
PLoS Genet. 2015 May 22;11(5):e1005252
pubmed: 26001115
Science. 2014 Nov 7;346(6210):1257521
pubmed: 25378630
J Virol. 2007 Mar;81(5):2391-400
pubmed: 17182693
Dev Cell. 2020 Nov 9;55(3):298-313.e10
pubmed: 33171110
Gene. 2017 Aug 20;625:21-30
pubmed: 28476687
PLoS Pathog. 2018 Jul 17;14(7):e1007166
pubmed: 30016363
Nat Struct Mol Biol. 2009 Feb;16(2):176-82
pubmed: 19169258
Int J Mol Med. 2016 Jun;37(6):1521-7
pubmed: 27121032
Mol Cell. 2011 May 20;42(4):489-99
pubmed: 21596313