Alternative Splicing in Human Biology and Disease.
Alternative splicing
Amyotrophic lateral sclerosis
Cis-acting regulatory elements
Frontotemporal dementia with parkinsonism linked to chromosome 17
Myotonic dystrophy type 1
Spinal muscular atrophy
Trans-acting splicing factors
snRNPs
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
27
7
2022
pubmed:
28
7
2022
medline:
30
7
2022
Statut:
ppublish
Résumé
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Identifiants
pubmed: 35895255
doi: 10.1007/978-1-0716-2521-7_1
doi:
Substances chimiques
RNA Precursors
0
RNA, Messenger
0
Trans-Activators
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-19Subventions
Organisme : Medical Research Council
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Sharp PA (1994) Split genes and RNA splicing. Cell 77:805–815. https://doi.org/10.1016/0092-8674(94)90130-9
doi: 10.1016/0092-8674(94)90130-9
pubmed: 7516265
Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336
pubmed: 12626338
Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323
pubmed: 25784052
pmcid: 4526142
Barbosa-Morais NL, Irimia M, Pan Q et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593. https://doi.org/10.1126/science.1230612
doi: 10.1126/science.1230612
pubmed: 23258890
Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–1599. https://doi.org/10.1126/science.1228186
doi: 10.1126/science.1228186
pubmed: 23258891
pmcid: 3568499
Shin C, Manley JL (2004) Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 5:727–738
pubmed: 15340380
Xing Y, Lee C (2006) Alternative splicing and RNA selection pressure—evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7:499–509
pubmed: 16770337
Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463
pubmed: 20110989
pmcid: 3443858
Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47
pubmed: 16839875
Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3:1–2. https://doi.org/10.1101/cshperspect.a003707
doi: 10.1101/cshperspect.a003707
Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14
pubmed: 12887888
Stark H, Dube P, Luührmann R, Kastner B (2001) Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409:539–542. https://doi.org/10.1038/35054102
doi: 10.1038/35054102
pubmed: 11206553
Urlaub H, Raker VA, Kostka S, Lührmann R (2001) Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 20:187–196. https://doi.org/10.1093/emboj/20.1.187
doi: 10.1093/emboj/20.1.187
pubmed: 11226169
pmcid: 140196
Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718
pubmed: 19239890
Kastner B, Will CL, Stark H, Lührmann R (2019) Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb Perspect Biol 11:a032417. https://doi.org/10.1101/cshperspect.a032417
doi: 10.1101/cshperspect.a032417
pubmed: 30765414
pmcid: 6824238
Wilkinson ME, Charenton C, Nagai K (2020) RNA splicing by the spliceosome. Annu Rev Biochem 89:359–388
pubmed: 31794245
Yan C, Wan R, Shi Y (2019) Molecular mechanisms of pre-mRNA splicing through structural biology of the spliceosome. Cold Spring Harb Perspect Biol 11:a032409. https://doi.org/10.1101/cshperspect.a032409
doi: 10.1101/cshperspect.a032409
pubmed: 30602541
pmcid: 6314064
Cordin O, Beggs JD (2013) RNA helicases in splicing. RNA Biol 10:83–95
pubmed: 23229095
pmcid: 3590240
Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295. https://doi.org/10.1126/science.1198830
doi: 10.1126/science.1198830
pubmed: 21393538
pmcid: 3086749
Kondo Y, Oubridge C, van Roon AMM, Nagai K (2015) Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. Elife 4:e04986. https://doi.org/10.7554/eLife.04986
doi: 10.7554/eLife.04986
pmcid: 4383343
Berglund JA, Abovich N, Rosbash M (1998) A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev 12:858–867. https://doi.org/10.1101/gad.12.6.858
doi: 10.1101/gad.12.6.858
pubmed: 9512519
pmcid: 316625
Plaschka C, Lin PC, Charenton C, Nagai K (2018) Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 559:419–422. https://doi.org/10.1038/s41586-018-0323-8
doi: 10.1038/s41586-018-0323-8
pubmed: 29995849
pmcid: 6141012
Charenton C, Wilkinson ME, Nagai K (2019) Mechanism of 5′ splice site transfer for human spliceosome activation. Science 364:362–367. https://doi.org/10.1126/science.aax3289
doi: 10.1126/science.aax3289
pubmed: 30975767
pmcid: 6525098
Haselbach D, Komarov I, Agafonov DE et al (2018) Structure and conformational dynamics of the human Spliceosomal Bact complex. Cell 172:454–464.e11. https://doi.org/10.1016/j.cell.2018.01.010
doi: 10.1016/j.cell.2018.01.010
pubmed: 29361316
Zhang X, Yan C, Hang J et al (2017) An atomic structure of the human spliceosome. Cell 169:918–929.e14. https://doi.org/10.1016/j.cell.2017.04.033
doi: 10.1016/j.cell.2017.04.033
pubmed: 28502770
Zhang X, Zhan X, Yan C et al (2019) Structures of the human spliceosomes before and after release of the ligated exon. Cell Res 29:274–285. https://doi.org/10.1038/s41422-019-0143-x
doi: 10.1038/s41422-019-0143-x
pubmed: 30728453
pmcid: 6461851
Patel AA, Steitz JA (2003) Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 4:960–970
pubmed: 14685174
Will CL, Lührmann R (2005) Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 386:713–724
pubmed: 16201866
Turunen JJ, Niemelä EH, Verma B, Frilander MJ (2013) The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA 4:61–76
pubmed: 23074130
Jutzi D, Akinyi MV, Mechtersheimer J et al (2018) The emerging role of minor intron splicing in neurological disorders. Cell Stress 2:40–54
pubmed: 31225466
pmcid: 6558932
Verma B, Akinyi MV, Norppa AJ, Frilander MJ (2018) Minor spliceosome and disease. Semin Cell Dev Biol 79:103–112
pubmed: 28965864
Niemelä EH, Frilander MJ (2014) Regulation of gene expression through inefficient splicing of U12-type introns. RNA Biol 11:1325–1329
pubmed: 25692230
Younis I, Dittmar K, Wang W et al (2013) Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. Elife 2:e00780. https://doi.org/10.7554/eLife.00780
doi: 10.7554/eLife.00780
pubmed: 23908766
pmcid: 3728624
Patel AA, McCarthy M, Steitz JA (2002) The splicing of U12-type introns can be a rate-limiting step in gene expression. EMBO J 21:3804–3815. https://doi.org/10.1093/emboj/cdf297
doi: 10.1093/emboj/cdf297
pubmed: 12110592
pmcid: 126102
Wang Z, Rolish ME, Yeo G et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831–845. https://doi.org/10.1016/j.cell.2004.11.010
doi: 10.1016/j.cell.2004.11.010
pubmed: 15607979
Matlin AJ, Clark F, Smith CWJ (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398
pubmed: 15956978
Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–813
pubmed: 18369186
pmcid: 2327353
Smith CWJ, Valcárcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25:381–388
pubmed: 10916158
Shepard PJ, Hertel KJ (2008) Conserved RNA secondary structures promote alternative splicing. RNA 14:1463–1469. https://doi.org/10.1261/rna.1069408
doi: 10.1261/rna.1069408
pubmed: 18579871
pmcid: 2491482
Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754
pubmed: 19773805
pmcid: 2958924
Fu XD, Ares M (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15:689–701
pubmed: 25112293
pmcid: 4440546
Shepard PJ, Hertel KJ (2009) The SR protein family. Genome Biol 10:242
pubmed: 19857271
pmcid: 2784316
Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15–27
pubmed: 19061484
Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270:2411–2414
pubmed: 7852296
Li X, Liu S, Zhang L et al (2019) A unified mechanism for intron and exon definition and back-splicing. Nature 573:375–380. https://doi.org/10.1038/s41586-019-1523-6
doi: 10.1038/s41586-019-1523-6
pubmed: 31485080
pmcid: 6939996
Shen H, Kan JLC, Green MR (2004) Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote Prespliceosome assembly. Mol Cell 13:367–376. https://doi.org/10.1016/S1097-2765(04)00025-5
doi: 10.1016/S1097-2765(04)00025-5
pubmed: 14967144
Kanopka A, Muhlemann O, Akusjarvi G (1996) Inhibition by SR proteins splicing of a regulated adenovirus pre-mRNA. Nature 381:535–538. https://doi.org/10.1038/381535a0
doi: 10.1038/381535a0
pubmed: 8632829
Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321
pubmed: 8352591
Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135:851–867
pubmed: 27215579
pmcid: 4947485
Witten JT, Ule J (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet 27:89–97
pubmed: 21232811
pmcid: 3165201
Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286. https://doi.org/10.1002/wrna.31
doi: 10.1002/wrna.31
pubmed: 21935890
pmcid: 3222227
Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 8:1351–1361. https://doi.org/10.1016/S1097-2765(01)00409-9
doi: 10.1016/S1097-2765(01)00409-9
pubmed: 11779509
Mayeda A, Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68:365–375. https://doi.org/10.1016/0092-8674(92)90477-T
doi: 10.1016/0092-8674(92)90477-T
pubmed: 1531115
König J, Zarnack K, Rot G et al (2010) ICLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915. https://doi.org/10.1038/nsmb.1838
doi: 10.1038/nsmb.1838
pubmed: 20601959
pmcid: 3000544
Oberstrass FC, Auwetor SD, Erat M et al (2005) Structural biology - structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309:2054–2057. https://doi.org/10.1126/science.1114066
doi: 10.1126/science.1114066
pubmed: 16179478
Blanchette M, Chabot B (1999) Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization. EMBO J 18:1939–1952. https://doi.org/10.1093/emboj/18.7.1939
doi: 10.1093/emboj/18.7.1939
pubmed: 10202157
pmcid: 1171279
Förch P, Puig O, Martínez C et al (2002) The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J 21:6882–6892. https://doi.org/10.1093/emboj/cdf668
doi: 10.1093/emboj/cdf668
pubmed: 12486009
pmcid: 139089
Izquierdo JM, Majós N, Bonnal S et al (2005) Regulation of fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19:475–484. https://doi.org/10.1016/j.molcel.2005.06.015
doi: 10.1016/j.molcel.2005.06.015
pubmed: 16109372
Sharma S, Maris C, Allain FHT, Black DL (2011) U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression. Mol Cell 41:579–588. https://doi.org/10.1016/j.molcel.2011.02.012
doi: 10.1016/j.molcel.2011.02.012
pubmed: 21362553
pmcid: 3931528
Martelly W, Fellows B, Senior K et al (2019) Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1. RNA 25:1509–1521. https://doi.org/10.1261/rna.072256.119
doi: 10.1261/rna.072256.119
pubmed: 31383795
pmcid: 6795144
Jutzi D, Campagne S, Schmidt R et al (2020) Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nat Commun 11:6341. https://doi.org/10.1038/s41467-020-20191-3
doi: 10.1038/s41467-020-20191-3
pubmed: 33311468
pmcid: 7733473
Bonnal S, Martínez C, Förch P et al (2008) RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 32:81–95. https://doi.org/10.1016/j.molcel.2008.08.008
doi: 10.1016/j.molcel.2008.08.008
pubmed: 18851835
Nik S, Bowman TV (2019) Splicing and neurodegeneration: insights and mechanisms. Wiley Interdiscip Rev RNA 10:e1532
pubmed: 30895702
Escobar-Hoyos L, Knorr K, Abdel-Wahab O (2019) Aberrant RNA splicing in cancer. Annu Rev Cancer Biol 3:167–185
pubmed: 32864546
Orengo JP, Ward AJ, Cooper TA (2011) Alternative splicing dysregulation secondary to skeletal muscle regeneration. Ann Neurol 69:681–690. https://doi.org/10.1002/ana.22278
doi: 10.1002/ana.22278
pubmed: 21400563
pmcid: 3082633
Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437
pubmed: 12600935
Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396
pubmed: 15168696
Meola G, Cardani R (2015) Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol basis Dis 1852:594–606
Brook JD, McCurrach ME, Harley HG et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808. https://doi.org/10.1016/0092-8674(92)90154-5
doi: 10.1016/0092-8674(92)90154-5
pubmed: 1310900
Fu YH, Pizzuti A, Fenwick RG et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258. https://doi.org/10.1126/science.1546326
doi: 10.1126/science.1546326
pubmed: 1546326
Mahadevan M, Tsilfidis C, Sabourin L et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255. https://doi.org/10.1126/science.1546325
doi: 10.1126/science.1546325
pubmed: 1546325
Davis BM, Mccurrach ME, Taneja KL et al (1997) Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci U S A 94:7388–7393. https://doi.org/10.1073/pnas.94.14.7388
doi: 10.1073/pnas.94.14.7388
pubmed: 9207101
pmcid: 23831
Miller JW, Urbinati CR, Teng-Umnuay P et al (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19:4439–4448. https://doi.org/10.1093/emboj/19.17.4439
doi: 10.1093/emboj/19.17.4439
pubmed: 10970838
pmcid: 302046
Kuyumcu-Martinez NM, Wang GS, Cooper TA (2007) Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell 28:68–78. https://doi.org/10.1016/j.molcel.2007.07.027
doi: 10.1016/j.molcel.2007.07.027
pubmed: 17936705
pmcid: 2083558
Kalsotra A, Xiao X, Ward AJ et al (2008) A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A 105:20333–20338. https://doi.org/10.1073/pnas.0809045105
doi: 10.1073/pnas.0809045105
pubmed: 19075228
pmcid: 2629332
Ladd AN, Charlet-B N, Cooper TA (2001) The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol 21:1285–1296. https://doi.org/10.1128/mcb.21.4.1285-1296.2001
doi: 10.1128/mcb.21.4.1285-1296.2001
pubmed: 11158314
pmcid: 99581
Charizanis K, Lee KY, Batra R et al (2012) Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75:437–450. https://doi.org/10.1016/j.neuron.2012.05.029
doi: 10.1016/j.neuron.2012.05.029
pubmed: 22884328
pmcid: 3418517
Charlet BN, Savkur RS, Singh G et al (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53. https://doi.org/10.1016/S1097-2765(02)00572-5
doi: 10.1016/S1097-2765(02)00572-5
Mankodi A, Takahashi MP, Jiang H et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44. https://doi.org/10.1016/S1097-2765(02)00563-4
doi: 10.1016/S1097-2765(02)00563-4
pubmed: 12150905
Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47. https://doi.org/10.1038/ng704
doi: 10.1038/ng704
pubmed: 11528389
Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280:737–741. https://doi.org/10.1126/science.280.5364.737
doi: 10.1126/science.280.5364.737
pubmed: 9563950
Sergeant N, Sablonnière B, Schraen-Maschke S et al (2001) Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 10:2143–2155. https://doi.org/10.1093/hmg/10.19.2143
doi: 10.1093/hmg/10.19.2143
pubmed: 11590131
Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371:2120–2133
pubmed: 18572081
Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165. https://doi.org/10.1016/0092-8674(95)90460-3
doi: 10.1016/0092-8674(95)90460-3
pubmed: 7813012
Schrank B, Götz R, Gunnersen JM et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94:9920–9925. https://doi.org/10.1073/pnas.94.18.9920
doi: 10.1073/pnas.94.18.9920
pubmed: 9275227
pmcid: 23295
Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN. Nat Genet 30:377–384. https://doi.org/10.1038/ng854
doi: 10.1038/ng854
pubmed: 11925564
Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463. https://doi.org/10.1038/ng1207
doi: 10.1038/ng1207
pubmed: 12833158
Singh NN, Androphy EJ, Singh RN (2004) In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA 10:1291–1305. https://doi.org/10.1261/rna.7580704
doi: 10.1261/rna.7580704
pubmed: 15272122
pmcid: 1370618
Burnett BG, Muñoz E, Tandon A et al (2009) Regulation of SMN protein stability. Mol Cell Biol 29:1107–1115. https://doi.org/10.1128/mcb.01262-08
doi: 10.1128/mcb.01262-08
pubmed: 19103745
Meister G, Bühler D, Pillai R et al (2001) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3:945–949. https://doi.org/10.1038/ncb1101-945
doi: 10.1038/ncb1101-945
pubmed: 11715014
Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779. https://doi.org/10.1126/science.1074962
doi: 10.1126/science.1074962
pubmed: 12459587
Neuenkirchen N, Englbrecht C, Ohmer J et al (2015) Reconstitution of the human U sn RNP assembly machinery reveals stepwise Sm protein organization. EMBO J 34:1925–1941. https://doi.org/10.15252/embj.201490350
doi: 10.15252/embj.201490350
pubmed: 26069323
pmcid: 4547896
Ruggiu M, McGovern VL, Lotti F et al (2012) A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32:126–138. https://doi.org/10.1128/mcb.06077-11
doi: 10.1128/mcb.06077-11
pubmed: 22037760
pmcid: 3255708
Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600. https://doi.org/10.1016/j.cell.2008.03.031
doi: 10.1016/j.cell.2008.03.031
pubmed: 18485868
pmcid: 2446403
Workman E, Saieva L, Carrel TL et al (2009) A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice. Hum Mol Genet 18:2215–2229. https://doi.org/10.1093/hmg/ddp157
doi: 10.1093/hmg/ddp157
pubmed: 19329542
pmcid: 2685758
Gabanella F, Butchbach MER, Saieva L et al (2007) Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One 2:e921. https://doi.org/10.1371/journal.pone.0000921
doi: 10.1371/journal.pone.0000921
pubmed: 17895963
pmcid: 1976558
Doktor TK, Hua Y, Andersen HS et al (2017) RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 45:395–416. https://doi.org/10.1093/nar/gkw731
doi: 10.1093/nar/gkw731
pubmed: 27557711
Osman EY, van Alstyne M, Yen PF et al (2020) Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons. JCI Insight 5:e130574. https://doi.org/10.1172/jci.insight.130574
doi: 10.1172/jci.insight.130574
pmcid: 7406293
Lotti F, Imlach WL, Saieva L et al (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151:440–454. https://doi.org/10.1016/j.cell.2012.09.012
doi: 10.1016/j.cell.2012.09.012
pubmed: 23063131
pmcid: 3474596
Simon CM, Van Alstyne M, Lotti F et al (2019) Stasimon contributes to the loss of sensory synapses and motor neuron death in a mouse model of spinal muscular atrophy. Cell Rep 29:3885–3901.e5. https://doi.org/10.1016/j.celrep.2019.11.058
doi: 10.1016/j.celrep.2019.11.058
pubmed: 31851921
pmcid: 6956708
Simon CM, Dai Y, Van Alstyne M et al (2017) Converging mechanisms of p53 activation drive motor neuron degeneration in spinal muscular atrophy. Cell Rep 21:3767–3780. https://doi.org/10.1016/j.celrep.2017.12.003
doi: 10.1016/j.celrep.2017.12.003
pubmed: 29281826
pmcid: 5747328
Van Alstyne M, Simon CM, Sardi SP et al (2018) Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev 32:1045–1059. https://doi.org/10.1101/gad.316059.118
doi: 10.1101/gad.316059.118
pubmed: 30012555
pmcid: 6075148
Pagliardini S, Giavazzi A, Setola V et al (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum Mol Genet 9:47–56. https://doi.org/10.1093/hmg/9.1.47
doi: 10.1093/hmg/9.1.47
pubmed: 10587577
Kye MJ, Niederst ED, Wertz MH et al (2014) SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 23:6318–6331. https://doi.org/10.1093/hmg/ddu350
doi: 10.1093/hmg/ddu350
pubmed: 25055867
pmcid: 4271102
Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955
pubmed: 21296405
Rowland LP, Shneider NA (2001) Medical Progress. Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700
Mathis S, Goizet C, Soulages A et al (2019) Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci 399:217–226
pubmed: 30870681
Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23
pubmed: 24369373
Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in als and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438
pubmed: 23931993
pmcid: 4411085
Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. https://doi.org/10.1038/nn.2778
doi: 10.1038/nn.2778
pubmed: 21358640
pmcid: 3108889
Humphrey J, Emmett W, Fratta P et al (2017) Quantitative analysis of cryptic splicing associated with TDP-43 depletion. BMC Med Genet 10:38. https://doi.org/10.1186/s12920-017-0274-1
doi: 10.1186/s12920-017-0274-1
Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349:650–655. https://doi.org/10.1126/science.aab0983
doi: 10.1126/science.aab0983
pubmed: 26250685
pmcid: 4825810
Tan Q, Yalamanchili HK, Park J et al (2016) Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet 25:5083–5093. https://doi.org/10.1093/hmg/ddw337
doi: 10.1093/hmg/ddw337
pubmed: 28007900
pmcid: 5968355
Klim JR, Williams LA, Limone F et al (2019) ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22:167–179. https://doi.org/10.1038/s41593-018-0300-4
doi: 10.1038/s41593-018-0300-4
pubmed: 30643292
pmcid: 7153761
Melamed Z, López-Erauskin J, Baughn MW et al (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 22:180–190. https://doi.org/10.1038/s41593-018-0293-z
doi: 10.1038/s41593-018-0293-z
pubmed: 30643298
pmcid: 6348009
Chauvin S, Sobel A (2015) Neuronal stathmins: a family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 126:1–18
pubmed: 25449700
Ebstein SY, Yagudayeva I, Shneider NA (2019) Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP Knockin mouse model of ALS. Cell Rep 26:364–373.e4. https://doi.org/10.1016/j.celrep.2018.12.045
doi: 10.1016/j.celrep.2018.12.045
pubmed: 30625319
Mitchell JC, Constable R, So E et al (2015) Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol Commun 3:36. https://doi.org/10.1186/s40478-015-0212-4
doi: 10.1186/s40478-015-0212-4
pubmed: 26108367
pmcid: 4479086
Fratta P, Sivakumar P, Humphrey J et al (2018) Mice with endogenous TDP -43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J 37:e98684. https://doi.org/10.15252/embj.201798684
doi: 10.15252/embj.201798684
pubmed: 29764981
pmcid: 5983119
Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. https://doi.org/10.1126/science.1165942
doi: 10.1126/science.1165942
pubmed: 19251628
pmcid: 4516382
Kwiatkowski TJ, Bosco DA, LeClerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. https://doi.org/10.1126/science.1166066
doi: 10.1126/science.1166066
pubmed: 19251627
Dormann D, Rodde R, Edbauer D et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import. EMBO J 29:2841–2857. https://doi.org/10.1038/emboj.2010.143
doi: 10.1038/emboj.2010.143
pubmed: 20606625
pmcid: 2924641
Loughlin FE, Lukavsky PJ, Kazeeva T et al (2019) The solution structure of FUS bound to RNA reveals a bipartite mode of RNA recognition with both sequence and shape specificity. Mol Cell 73:490–504.e6. https://doi.org/10.1016/j.molcel.2018.11.012
doi: 10.1016/j.molcel.2018.11.012
pubmed: 30581145
Rogelj B, Easton LE, Bogu GK et al (2012) Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep 2:603. https://doi.org/10.1038/srep00603
doi: 10.1038/srep00603
pubmed: 22934129
pmcid: 3429604
Lagier-Tourenne C, Polymenidou M, Hutt KR et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497. https://doi.org/10.1038/nn.3230
doi: 10.1038/nn.3230
pubmed: 23023293
pmcid: 3586380
Devoy A, Kalmar B, Stewart M et al (2017) Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in “FUSDelta14” knockin mice. Brain 140:2797–2805. https://doi.org/10.1093/brain/awx248
doi: 10.1093/brain/awx248
pubmed: 29053787
pmcid: 5841203
Scekic-Zahirovic J, Sendscheid O, El Oussini H et al (2016) Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 35:1077–1097. https://doi.org/10.15252/embj.201592559
doi: 10.15252/embj.201592559
pubmed: 26951610
pmcid: 4868956
Gerbino V, Carrì MT, Cozzolino M, Achsel T (2013) Mislocalised FUS mutants stall spliceosomal snRNPs in the cytoplasm. Neurobiol Dis 55:120–128. https://doi.org/10.1016/j.nbd.2013.03.003
doi: 10.1016/j.nbd.2013.03.003
pubmed: 23523636
Sun S, Ling SC, Qiu J et al (2015) ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 6:6171. https://doi.org/10.1038/ncomms7171
doi: 10.1038/ncomms7171
pubmed: 25625564
Yu Y, Chi B, Xia W et al (2015) U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic Acids Res 43:3208–3218. https://doi.org/10.1093/nar/gkv157
doi: 10.1093/nar/gkv157
pubmed: 25735748
pmcid: 4381066
Panza F, Lozupone M, Seripa D et al (2020) Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 16:213–228
pubmed: 32203398
Hodges JR, Piguet O (2018) Progress and challenges in frontotemporal dementia research: a 20-year review. J Alzheimers Dis 62:1467–1480
pubmed: 29504536
pmcid: 5870022
Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–704. https://doi.org/10.1038/31508
doi: 10.1038/31508
pubmed: 9641683
Wszolek ZK, Tsuboi Y, Ghetti B et al (2006) Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Orphanet J Rare Dis 1:30
pubmed: 16899117
pmcid: 1563447
Ehrlich M, Hallmann AL, Reinhardt P et al (2015) Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein. Stem Cell Rep 5:83–96. https://doi.org/10.1016/j.stemcr.2015.06.001
doi: 10.1016/j.stemcr.2015.06.001
D’Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta Mol basis Dis 1739:104–115
Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704
pubmed: 28386764
pmcid: 5390006
Niblock M, Gallo JM (2012) Tau alternative splicing in familial and sporadic tauopathies. Biochem Soc Trans 40:677–680
pubmed: 22817715
Wolfe MS (2012) The role of tau in neurodegenerative diseases and its potential as a therapeutic target. Scientifica (Cairo) 2012:1–20. https://doi.org/10.6064/2012/796024
doi: 10.6064/2012/796024
Grover A, Houlden H, Baker M et al (1999) 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem 274:15134–15143. https://doi.org/10.1074/jbc.274.21.15134
doi: 10.1074/jbc.274.21.15134
pubmed: 10329720
Andreadis A (2012) Tau splicing and the intricacies of dementia. J Cell Physiol 227:1220–1225
pubmed: 21604267
pmcid: 3177961
Kar A, Havlioglu N, Tarn WY, Wu JY (2006) RBM4 interacts with an intronic element and stimulates tau exon 10 inclusion. J Biol Chem 281:24479–24488. https://doi.org/10.1074/jbc.M603971200
doi: 10.1074/jbc.M603971200
pubmed: 16777844
Chapple PJ, Anthony K, Martin TR et al (2007) Expression, localization and tau exon 10 splicing activity of the brain RNA-binding protein TNRC4. Hum Mol Genet 16:2760–2769. https://doi.org/10.1093/hmg/ddm233
doi: 10.1093/hmg/ddm233
pubmed: 17725984
Gao L, Wang J, Wang Y, Andreadis A (2007) SR protein 9G8 modulates splicing of tau exon 10 via its proximal downstream intron, a clustering region for frontotemporal dementia mutations. Mol Cell Neurosci 34:48–58. https://doi.org/10.1016/j.mcn.2006.10.004
doi: 10.1016/j.mcn.2006.10.004
pubmed: 17137791
Kar A, Fushimi K, Zhou X et al (2011) RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5’ splice site. Mol Cell Biol 31:1812–1821. https://doi.org/10.1128/mcb.01149-10
doi: 10.1128/mcb.01149-10
pubmed: 21343338
pmcid: 3133221
Kondo S, Yamamoto N, Murakami T et al (2004) Tra2β, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. Genes Cells 9:121–130. https://doi.org/10.1111/j.1356-9597.2004.00709.x
doi: 10.1111/j.1356-9597.2004.00709.x
pubmed: 15009090
Strang KH, Golde TE, Giasson BI (2019) MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig 99:912–928
pubmed: 30742061