α-Thianthrenium Carbonyl Species: The Equivalent of an α-Carbonyl Carbocation.

Amino Acids Carbocation Carbonyl Compounds Michael Acceptor Umpolung

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
26 09 2022
Historique:
received: 20 06 2022
pubmed: 28 7 2022
medline: 23 9 2022
entrez: 27 7 2022
Statut: ppublish

Résumé

Here we report an α-thianthrenium carbonyl species, as the equivalent of an α-carbonyl carbocation, which is generated by the radical conjugate addition of a trifluoromethyl thianthrenium salt to Michael acceptors. The reactivity allows for the synthesis of C

Identifiants

pubmed: 35895980
doi: 10.1002/anie.202208978
pmc: PMC9804271
doi:

Substances chimiques

Acetonitriles 0
Amino Acids 0
Fluorides Q80VPU408O

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202208978

Informations de copyright

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

Angew Chem Int Ed Engl. 2012 Sep 3;51(36):8950-8
pubmed: 22890985
J Am Chem Soc. 2021 May 26;143(20):7623-7628
pubmed: 33985330
Nat Commun. 2019 Nov 20;10(1):5244
pubmed: 31748504
Chem Rev. 2003 Mar;103(3):811-92
pubmed: 12630854
Chem Soc Rev. 2007 Oct;36(10):1581-8
pubmed: 17721583
Chem Sci. 2021 Jan 7;12(8):2816-2822
pubmed: 34164045
J Am Chem Soc. 2019 Feb 6;141(5):1887-1892
pubmed: 30668092
Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1881-6
pubmed: 24505007
Org Biomol Chem. 2016 Jan 7;14(1):206-10
pubmed: 26574882
J Org Chem. 2022 Feb 4;87(3):1756-1766
pubmed: 34610236
Chemistry. 2009;15(1):38-41
pubmed: 19034944
J Am Chem Soc. 2021 Aug 4;143(30):11856-11863
pubmed: 34296601
Chem Rec. 2022 Jan;22(1):e202100172
pubmed: 34418282
Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21116-21149
pubmed: 33629454
Chem Sci. 2021 Jan 7;12(3):853-864
pubmed: 34163852
Acc Chem Res. 2022 Jun 21;55(12):1703-1717
pubmed: 35652370
Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18876-18881
pubmed: 34170591
Org Lett. 2016 Feb 5;18(3):348-51
pubmed: 26752325
Chem Rev. 2022 Jan 26;122(2):1830-1874
pubmed: 34842426
Chem Sci. 2019 Aug 16;10(36):8285-8291
pubmed: 32055300
J Am Chem Soc. 2021 Feb 24;143(7):2812-2821
pubmed: 33561344
Chem Rev. 2013 Sep 11;113(9):6905-48
pubmed: 23819438
Chem Soc Rev. 2018 Oct 29;47(21):7899-7925
pubmed: 30152510
Chem Sci. 2020 Oct 20;11(47):12822-12828
pubmed: 34094477
J Am Chem Soc. 2015 Jan 21;137(2):964-73
pubmed: 25561161
Org Biomol Chem. 2012 Jun 14;10(22):4327-9
pubmed: 22592400
Angew Chem Int Ed Engl. 2015 Nov 23;54(48):14232-42
pubmed: 26471460
Science. 2007 Apr 27;316(5824):582-5
pubmed: 17395791
ACS Catal. 2019;9(2):1558-1563
pubmed: 31588366
J Am Chem Soc. 2018 Jun 27;140(25):8037-8047
pubmed: 29916711
Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202208978
pubmed: 35895980
J Am Chem Soc. 1948 Nov;70(11):3626
pubmed: 18121882
Angew Chem Int Ed Engl. 2013 Dec 2;52(49):13086-90
pubmed: 24174281
Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15430-15434
pubmed: 30204292
Org Lett. 2020 Nov 6;22(21):8598-8602
pubmed: 33086786
Chem Soc Rev. 2014 Sep 7;43(17):6214-26
pubmed: 24867308
Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13324-8
pubmed: 24130174
J Am Chem Soc. 2016 Jan 27;138(3):944-54
pubmed: 26761148
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4246-9
pubmed: 25694230
Chem Commun (Camb). 2016 May 11;52(38):6371-4
pubmed: 26996326
Chem Rev. 2021 Aug 11;121(15):9196-9242
pubmed: 34309362
Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3870-3874
pubmed: 30681266
J Am Chem Soc. 2020 Dec 16;142(50):20942-20947
pubmed: 33263989
J Am Chem Soc. 2013 Oct 2;135(39):14480-3
pubmed: 24047140
Chemistry. 2013 Oct 11;19(42):14039-42
pubmed: 24108594
Chem Commun (Camb). 2005 Oct 14;(38):4821-3
pubmed: 16193126
Chem Soc Rev. 2022 Feb 21;51(4):1415-1453
pubmed: 35099488
J Am Chem Soc. 2021 Jun 16;143(23):8597-8602
pubmed: 34076424
Angew Chem Int Ed Engl. 2021 Dec 13;60(51):26822-26828
pubmed: 34586701
Chem Rev. 2020 Mar 11;120(5):2448-2612
pubmed: 32040305
Sci Rep. 2015 Nov 18;5:16397
pubmed: 26578341
Chem Rev. 2009 Jan;109(1):1-48
pubmed: 19140772
Nat Chem. 2019 Apr;11(4):329-334
pubmed: 30833720
Org Lett. 2018 Jan 5;20(1):296-299
pubmed: 29272133
Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18728-18733
pubmed: 34087048

Auteurs

Hao Jia (H)

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.

Tobias Ritter (T)

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

Articles similaires

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans
Intrinsically Disordered Proteins Protein Conformation Nuclear Magnetic Resonance, Biomolecular Amino Acids Computational Biology
Humans Male Female Coronary Artery Disease Aged

The Effect of Actives in Desensitizing and Conventional Mouth Rinses Against Dentin Erosive Wear.

Diana Roberta Pereira Grandizoli, Letícia Oba Sakae, Ana Luísa Meira Renzo et al.
1.00
Mouthwashes Humans Tooth Erosion Dentin Desensitizing Agents Sodium Fluoride

Classifications MeSH