The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway.


Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
09 2022
Historique:
revised: 10 07 2022
received: 16 06 2022
accepted: 19 07 2022
pubmed: 29 7 2022
medline: 28 9 2022
entrez: 28 7 2022
Statut: ppublish

Résumé

Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that the current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.

Identifiants

pubmed: 35899376
doi: 10.1002/1873-3468.14457
doi:

Substances chimiques

Ceramides 0
Sphingolipids 0
Fatty Acid Desaturases EC 1.14.19.-
Serine C-Palmitoyltransferase EC 2.3.1.50

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2345-2363

Informations de copyright

© 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Hannun YA, Obeid LM. Many ceramides. J Biol Chem. 2011;286:27855-62.
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22:5793.
Canals D, Clarke CJ. Compartmentalization of sphingolipid metabolism: implications for signaling and therapy. Pharmacol Ther. 2022;232:108005.
Futerman AH, Riezman H. The ins and outs of sphingolipid synthesis. Trends Cell Biol. 2005;15:312-8.
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:175-91.
Dingjan T, Futerman AH. The role of the ‘sphingoid motif’ in shaping the molecular interactions of sphingolipids in biomembranes. Biochim Biophys Acta Biomembr. 2021;1863:183701.
LIPID MAPS Structure Database (LMSD) [cited 2022 Jun 2]. Available from: https://www.lipidmaps.org/databases
Dingjan T, Futerman AH. The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity. Bioessays. 2021;43:e2100021.
Ikushiro H, Hayashi H, Kagamiyama H. A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain purification, characterization, cloning, and overproduction. J Biol Chem. 2001;276:18249-56.
Ralser M, Varma SJ, Notebaart RA. The evolution of the metabolic network over long timelines. Curr Opin Syst Biol. 2021;28:100402.
Caetano-Anollés G, Yafremava LS, Gee H, Caetano-Anollés D, Kim HS, Mittenthal JE. The origin and evolution of modern metabolism. Int J Biochem Cell Biol. 2009;41:285-97.
Bourquin F, Capitani G, Grütter MG. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci. 2011;20:1492-508.
Li S, Xie T, Liu P, Wang L, Gong X. Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. Nat Struct Mol Biol. 2021;28:249-57.
Wang Y, Niu Y, Zhang Z, Gable K, Gupta SD, Somashekarappa N, et al. Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat Struct Mol Biol. 2021;28:240-8.
Lone MA, Hülsmeier AJ, Saied EM, Karsai G, Arenz C, von Eckardstein A, et al. Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proc Natl Acad Sci USA. 2020;117:15591-8.
Hornemann T, Richard S, Rütti MF, Wei Y, von Eckardstein A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem. 2006;281:37275-81.
Han G, Gupta SD, Gable K, Niranjanakumari S, Moitra P, Eichler F, et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci USA. 2009;106:8186-91.
Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, Gonzàlez-Duarte R. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 2002;3:RESEARCH0027.
Clarke BA, Majumder S, Zhu H, Lee YT, Kono M, Li C, et al. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. Elife. 2019;8:e51067.
Green CD, Weigel C, Oyeniran C, James BN, Davis D, Mahawar U, et al. CRISPR/Cas9 deletion of ORMDLs reveals complexity in sphingolipid metabolism. J Lipid Res. 2021;62:100082.
Cai L, Oyeniran C, Biswas DD, Allegood J, Milstien S, Kordula T, et al. ORMDL proteins regulate ceramide levels during sterile inflammation. J Lipid Res. 2016;57:1412-22.
Davis DL, Gable K, Suemitsu J, Dunn TM, Wattenberg BW. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes. J Biol Chem. 2019;294:5146-56.
Bode H, Bourquin F, Suriyanarayanan S, Wei Y, Alecu I, Othman A, et al. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Hum Mol Genet. 2016;25:853-65.
Rotthier A, Baets J, Timmerman V, Janssens K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol. 2012;8:73-85.
Mohassel P, Donkervoort S, Lone MA, Nalls M, Gable K, Gupta SD, et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat Med. 2021;27:1197-204.
Ma X, Long F, Yun Y, Dang J, Wei S, Zhang Q, et al. ORMDL3 and its implication in inflammatory disorders. Int J Rheum Dis. 2018;21:1154-62.
Harrison PJ, Dunn TM, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep. 2018;35:921-54.
Kihara A, Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem. 2004;279:49243-50.
Chao D-Y, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, et al. Sphingolipids in the root play an important role in regulating the leaf Ionome in Arabidopsis thaliana. Plant Cell. 2011;23:1061-81.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583-9.
Gupta SD, Gable K, Han G, Borovitskaya A, Selby L, Dunn TM, et al. Tsc10p and FVT1: topologically distinct short-chain reductases required for long-chain base synthesis in yeast and mammals. J Lipid Res. 2009;50:1630-40.
Park K-H, Ye ZW, Zhang J, Hammad SM, Townsend DM, Rockey DC, et al. 3-Ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep. 2019;9:1138.
Krebs S, Medugorac I, Röther S, Strässer K, Förster M. A missense mutation in the 3-ketodihydrosphingosine reductase FVT1 as candidate causal mutation for bovine spinal muscular atrophy. Proc Natl Acad Sci USA. 2007;104:6746-51.
Boyden LM, Vincent NG, Zhou J, Hu R, Craiglow BG, Bayliss SJ, et al. Mutations in KDSR cause recessive progressive symmetric erythrokeratoderma. Am J Hum Genet. 2017;100:978-84.
Takeichi T, Torrelo A, Lee JYW, Ohno Y, Lozano ML, Kihara A, et al. Biallelic mutations in KDSR disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia. J Invest Dermatol. 2017;137:2344-53.
Altawil L, Alshihry H, Alfaraidi H, Alhashem A, Alhumidi A, Alkuraya FS. Progressive symmetrical erythrokeratoderma manifesting as harlequin-like ichthyosis with severe thrombocytopenia secondary to a homozygous 3-ketodihydrosphingosine reductase mutation. JAAD Case Rep. 2021;14:55-8.
Pilz R, Opálka L, Majcher A, Grimm E, Van Maldergem L, Mihalceanu S, et al. Formation of keto-type ceramides in palmoplantar keratoderma based on biallelic KDSR mutations in patients. Hum Mol Genet. 2022;31(7):1105-14.
Möuts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir. 2018;34:15864-70.
Björkbom A, Róg T, Kankaanpää P, Lindroos D, Kaszuba K, Kurita M, et al. N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol. Biochim Biophys Acta. 2011;1808:1179-86.
Maula T, Kurita M, Yamaguchi S, Yamamoto T, Katsumura S, Slotte JP. Effects of sphingosine 2N- and 3O-methylation on palmitoyl ceramide properties in bilayer membranes. Biophys J. 2011;101:2948-56.
Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem. 2013;288:13397-409.
Munshi MA, Gardin JM, Singh A, Luberto C, Rieger R, Bouklas T, et al. The role of ceramide synthases in the pathogenicity of Cryptococcus neoformans. Cell Rep. 2018;22:1392-400.
Zelnik ID, Rozman B, Rosenfeld-Gur E, Ben-Dor S, Futerman AH. A stroll down the CerS lane. Adv Exp Med Biol. 2019;1159:49-63.
Tidhar R, Zelnik ID, Volpert G, Ben-Dor S, Kelly S, Merrill AH Jr, et al. Eleven residues determine the acyl chain specificity of ceramide synthases. J Biol Chem. 2018;293:9912-21.
Venkataraman K, Futerman AH. Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis? FEBS Lett. 2002;528:3-4.
Mesika A, Ben-Dor S, Laviad EL, Futerman AH. A new functional motif in Hox domain-containing ceramide synthases identification of a novel region flanking the Hox and TLC domains essential for activity. J Biol Chem. 2007;282:27366-73.
Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM. Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res. 1998;8:1259-72.
Spassieva S, Seo JG, Jiang JC, Bielawski J, Alvarez-Vasquez F, Jazwinski SM, et al. Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J Biol Chem. 2006;281:33931-8.
Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, et al. Characterization of ceramide synthase 2 tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem. 2008;283:5677-84.
Sassa T, Hirayama T, Kihara A. Enzyme activities of the ceramide synthases CERS2-6 are regulated by phosphorylation in the C-terminal region. J Biol Chem. 2016;291:7477-87.
Kim JL, Ben-Dor S, Rosenfeld-Gur E, Futerman AH. A novel C-terminal DxRSDxE motif in ceramide synthases involved in dimer formation. J Biol Chem. 2022;298:101517.
Kim JL, Mestre B, Malitsky S, Itkin M, Kupervaser M, Futerman AH. Fatty acid transport protein 2 interacts with ceramide synthase 2 to promote ceramide synthesis. J Biol Chem. 2022;298:101735.
Wegner M-S, Schiffmann S, Parnham MJ, Geisslinger G, Grösch S. The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res. 2016;63:93-119.
Park J-W, Park W-J, Futerman AH. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta. 2014;1841:671-81.
Vanni N, Fruscione F, Ferlazzo E, Striano P, Robbiano A, Traverso M, et al. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann Neurol. 2014;76:206-12.
Shiffman D, Pare G, Oberbauer R, Louie JZ, Rowland CM, Devlin JJ, et al. A gene variant in CERS2 is associated with rate of increase in albuminuria in patients with diabetes from ontarget and transcend. PLoS One. 2014;9:e106631.
Kirin M, Chandra A, Charteris DG, Hayward C, Campbell S, Celap I, et al. Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment. Hum Mol Genet. 2013;22:3174-85.
Eckl K-M, Tidhar R, Thiele H, Oji V, Hausser I, Brodesser S, et al. Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J Invest Dermatol. 2013;133:2202-11.
Blanco A, Blanco G. Chapter 13 - Metabolism. In: Medical biochemistry. Cambridge, MA: Academic Press; 2017. p. 275-81. https://doi.org/10.1016/B978-0-12-803550-4.00013-6
Wishart DS, Guo AC, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2021;50:D622-31.
Judge A, Dodd MS. Metabolism. Essays Biochem. 2020;64:607-47.
Percudani R, Peracchi A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics. 2009;10:273.
Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004;73:383-415.
Lowther J, Naismith JH, Dunn TM, Campopiano DJ. Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans. 2012;40:547-54.
Turbeville TD. PLP-dependent α-oxoamine synthases: phylogenetic analysis, structural plasticity, and structure-function studies on 5-aminolevulinate synthase. USF Tampa Graduate Theses and Dissertations; 2009.
Percudani R, Peracchi A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 2003;4:850-4.
Ikushiro H, Hayashi H. Mechanistic enzymology of serine palmitoyltransferase. Biochim Biophys Acta. 2011;1814:1474-80.
Schneider G, Käck H, Lindqvist Y. The manifold of vitamin B6 dependent enzymes. Structure. 2000;8:R1-6.
Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academies Press (US); 1998.
Combs GF, McClung JP. The vitamins (fifth edition). Part II considering individ vitamins. 2017. p. 351-70.
Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.
Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J. 2007;407:1-13.
Richts B, Commichau FM. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Appl Microbiol Biotechnol. 2021;105:2297-305.
Reitzer L. Amino acid synthesis. 2014.
Bertea M, Rütti MF, Othman A, Marti-Jaun J, Hersberger M, von Eckardstein A, et al. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis. 2010;9:84.
Penno A, Reilly MM, Houlden H, Laurá M, Rentsch K, Niederkofler V, et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem. 2010;285:11178-87.
Litwack G. Human biochemistry. Boston, MA: Academic Press; 2018. p. 359-94.
Lehner R, Quiroga AD. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2021. p. 161-200.
Sul HS, Smith S. Biochemistry of lipids, lipoproteins and membranes. 5th ed. Amsterdam: Elsevier; 2008. p. 155-90.
Watkins PA. Fatty acid activation. Prog Lipid Res. 1997;36:55-83.
Grevengoed TJ, Klett EL, Coleman RA. Acyl-CoA metabolism and partitioning. Annu Rev Nutr. 2014;34:1-30.
Czumaj A, Szrok-Jurga S, Hebanowska A, Turyn J, Swierczynski J, Sledzinski T, et al. The pathophysiological role of CoA. Int J Mol Sci. 2020;21:9057.
Daugherty M, Polanuyer B, Farrell M, Scholle M, Lykidis A, de Crécy-Lagard V, et al. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem. 2002;277:21431-9.
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol. 2015;6:742.
Xiao W, Wang R-S, Handy DE, Loscalzo J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal. 2018;28:251-72.
Koju N, Qin Z, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin. 2022. https://doi.org/10.1038/s41401-021-00838-7
Noda-Garcia L, Liebermeister W, Tawfik DS. Metabolite-enzyme coevolution: from single enzymes to metabolic pathways and networks. Annu Rev Biochem. 2018;87:187-216.
Brown OR, Hullender DA. Neo-Darwinism must mutate to survive. Prog Biophys Mol Biol. 2022;172:24-38.
Palazzo AF, Kejiou NS. Non-Darwinian molecular biology. Front Genet. 2022;13:831068.
Shapiro J, Noble D. What prevents mainstream evolutionists teaching the whole truth about how genomes evolve? Prog Biophys Mol Biol. 2021;165:140-52.
Cano AV, Rozhoňová H, Stoltzfus A, McCandlish DM, Payne JL. Mutation bias shapes the spectrum of adaptive substitutions. Proc Natl Acad Sci U S A. 2022;119:e2119720119.
Pagni S, Mills JD, Frankish A, Mudge JM, Sisodiya SM. Non-coding regulatory elements: potential roles in disease and the case of epilepsy. Neuropathol Appl Neurobiol. 2022;48:e12775.
Stankeviciute G, Tang P, Ashley B, Chamberlain JD, Hansen MEB, Coleman A, et al. Convergent evolution of bacterial ceramide synthesis. Nat Chem Biol. 2022;18:305-12.
Romero Romero ML, Rabin A, Tawfik DS. Functional proteins from short peptides: Dayhoff's hypothesis turns 50. Angew Chem Int Ed Engl. 2016;55:15966-71.
Hampton T. The new view of proteins. Inference Int Rev Sci. 2014;1. Available from: https://inference-review.com/article/the-new-view-of-proteins
Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M, Liu H, et al. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol. 2007;370:870-86.
Raman MCC, Johnson KA, Clarke DJ, Naismith JH, Campopiano DJ. The serine palmitoyltransferase from Sphingomonas wittichii RW1: an interesting link to an unusual acyl carrier protein. Biopolymers. 2010;93:811-22.
Longo LM, Petrović D, Kamerlin SCL, Tawfik DS. Short and simple sequences favored the emergence of N-helix phospho-ligand binding sites in the first enzymes. Proc Natl Acad Sci USA. 2020;117:5310-8.
Rushton AR. A genetic model for the evolution of the glycosphingolipids. J Mol Evol. 1975;6:15-37.
Holmes RS, Barron KA, Krupenko NI. Ceramide synthase 6: comparative analysis, phylogeny and evolution. Biomolecules. 2018;8:111.
Koutsogiannis Z, Mina JG, Albus CA, Kol MA, Holthuis JCM, Pohl E, et al. Toxoplasma ceramide synthases: a curious case of gene duplication, divergence and key functionality. Biorxiv. 2022. https://doi.org/10.1101/2022.01.05.475179
Resemann HC, Herrfurth C, Feussner K, Hornung E, Ostendorf AK, Gömann J, et al. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. Nat Plants. 2021;7:219-32.
Aharoni A, Gaidukov L, Khersonsky O, Gould SMQ, Roodveldt C, Tawfik DS. The “evolvability” of promiscuous protein functions. Nat Genet. 2005;37:73-6.
Yang G, Miton CM, Tokuriki N. A mechanistic view of enzyme evolution. Protein Sci. 2020;29:1724-47.
Juárez-Vázquez AL, Edirisinghe JN, Verduzco-Castro EA, Michalska K, Wu C, Noda-García L, et al. Evolution of substrate specificity in a retained enzyme driven by gene loss. Elife. 2017;6:e22679.
Monier A, Pagarete A, de Vargas C, Allen MJ, Read B, Claverie JM, et al. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res. 2009;19:1441-9.
Noda-García L, Camacho-Zarco AR, Medina-Ruíz S, Gaytán P, Carrillo-Tripp M, Fülöp V, et al. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer. Mol Biol Evol. 2013;30:2024-34.
Noor S, Taylor MC, Russell RJ, Jermiin LS, Jackson CJ, Oakeshott JG, et al. Intramolecular epistasis and the evolution of a new enzymatic function. PLoS One. 2012;7:e39822.
Draghi JA, Plotkin JB. Selection biases the prevalence and type of epistasis along adaptive trajectories. Evolution. 2013;67:3120-31.
Rancurel C, Khosravi M, Dunker AK, Romero PR, Karlin D. Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J Virol. 2009;83:10719-36.
Fellner L, Simon S, Scherling C, Witting M, Schober S, Polte C, et al. Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting. BMC Evol Biol. 2015;15:283.
Hernandez Y, Shpak M, Duarte TT, Mendez TL, Maldonado RA, Roychowdhury S, et al. Novel role of sphingolipid synthesis genes in regulating giardial encystation. Infect Immun. 2008;76:2939-49.
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: gate guardians and master regulators. Adv Biol Regul. 2018;70:3-18.
Catazaro J, Caprez A, Guru A, Swanson D, Powers R. Functional evolution of PLP-dependent enzymes based on active-site structural similarities. Proteins. 2014;82:2597-608.
Hornemann T, Penno A, Rütti MF, Ernst D, Kivrak-Pfiffner F, Rohrer L, et al. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J Biol Chem. 2009;284:26322-30.
Mandlik V, Shinde S, Singh S. Molecular evolution of the enzymes involved in the sphingolipid metabolism of Leishmania: selection pressure in relation to functional divergence and conservation. BMC Evol Biol. 2014;14:142.
Horowitz NH. On the evolution of biochemical syntheses. Proc Natl Acad Sci USA. 1945;31:153-7.
Granick S. Evolving genes and proteins. Part II: Evolution of pathways II. New York, NY: Academic Press; 1965. p. 67-88.
Jensen RA. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30:409-25.
Yčas M. On earlier states of the biochemical system. J Theor Biol. 1974;44:145-60.
Lazcano A, Miller SL. On the origin of metabolic pathways. J Mol Evol. 1999;49:424-31.
Zhao M, Ding R, Liu Y, Ji Z, Zhao Y. Determination of the amino acid recruitment order in early life by genome-wide analysis of amino acid usage bias. Biomolecules. 2022;12:171.
Crapitto AJ, Campbell A, Harris A, Goldman AD. A consensus view of the proteome of the last universal common ancestor. Ecol Evol. 2022;12:e8930.
Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1:16116.
Xavier JC, Gerhards RE, Wimmer JLE, Brueckner J, Tria FDK, Martin WF. The metabolic network of the last bacterial common ancestor. Commun Biol. 2021;4:413.
Louca S, Mazel F, Doebeli M, Parfrey LW. A census-based estimate of Earth's bacterial and archaeal diversity. PLoS Biol. 2019;17:e3000106.
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2021;50:D785-94.
Lam HM, Winkler ME. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J Bacteriol. 1990;172:6518-28.
D'Ari R, Casadesús J. Underground metabolism. Bioessays. 1998;20:181-6.
Tawfik DS. Messy biology and the origins of evolutionary innovations. Nat Chem Biol. 2010;6:692-6.
Merrill AH, Wang E, Mullins RE. Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway. Biochemistry. 1988;27:340-5.
Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW, Gengatharan J, et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature. 2020;586:790-5.
Thudichum JLW. A treatise on the chemical constitution of the brain: based throughout upon original researches. London: Bailliere, Tindall, and Cox; 1884.
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Bio. 2008;9:112-24.
Gomez-Larrauri A, Presa N, Dominguez-Herrera A, Ouro A, Trueba M, Gomez-Muñoz A. Role of bioactive sphingolipids in physiology and pathology. Essays Biochem. 2020;64:579-89.
Pascher I. Molecular arrangements in sphingolipids conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta. 1976;455:433-51.
Slotte JP. The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. Biochim Biophys Acta. 2016;1858:304-10.
Alonso A, Goñi FM. The physical properties of ceramides in membranes. Annu Rev Biophys. 2018;47:1-22.
Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, et al. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA. 2008;105:488-93.
Wattenberg BW. Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex. Nat Struct Mol Biol. 2021;28:229-31.

Auteurs

Tania C B Santos (TCB)

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Tamir Dingjan (T)

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Anthony H Futerman (AH)

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Articles similaires

Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation
Humans Breast Neoplasms Female Mass Spectrometry Adipose Tissue
Humans Tryptophan Neoplasms Signal Transduction Animals
Humans Proteomics Paraffin Embedding Tissue Fixation Organelles

Classifications MeSH