The Delivery of Extracellular "Danger" Signals to Cytosolic Sensors in Phagocytes.

DAMP PAMP dendritic cell endocytic organelle macrophage pattern recognition receptor phagocyte phagocytosis

Journal

Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960

Informations de publication

Date de publication:
2022
Historique:
received: 14 05 2022
accepted: 23 06 2022
entrez: 1 8 2022
pubmed: 2 8 2022
medline: 3 8 2022
Statut: epublish

Résumé

Phagocytes, such as macrophages and dendritic cells, possess the ability to ingest large quantities of exogenous material into membrane-bound endocytic organelles such as macropinosomes and phagosomes. Typically, the ingested material, which consists of diverse macromolecules such as proteins and nucleic acids, is delivered to lysosomes where it is digested into smaller molecules like amino acids and nucleosides. These smaller molecules can then be exported out of the lysosomes by transmembrane transporters for incorporation into the cell's metabolic pathways or for export from the cell. There are, however, exceptional instances when undigested macromolecules escape degradation and are instead delivered across the membrane of endocytic organelles into the cytosol of the phagocyte. For example, double stranded DNA, a damage associated molecular pattern shed by necrotic tumor cells, is endocytosed by phagocytes in the tumor microenvironment and delivered to the cytosol for detection by the cytosolic "danger" sensor cGAS. Other macromolecular "danger" signals including lipopolysaccharide, intact proteins, and peptidoglycans can also be actively transferred from within endocytic organelles to the cytosol. Despite the obvious biological importance of these processes, we know relatively little of how macromolecular "danger" signals are transferred across endocytic organelle membranes for detection by cytosolic sensors. Here we review the emerging evidence for the active cytosolic transfer of diverse macromolecular "danger" signals across endocytic organelle membranes. We will highlight developing trends and discuss the potential molecular mechanisms driving this emerging phenomenon.

Identifiants

pubmed: 35911757
doi: 10.3389/fimmu.2022.944142
pmc: PMC9329928
doi:

Substances chimiques

Macromolecular Substances 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

944142

Informations de copyright

Copyright © 2022 Gonzales and Canton.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Mol Immunol. 2015 Dec;68(2 Pt A):112-5
pubmed: 26005101
EMBO J. 2018 Nov 2;37(21):
pubmed: 30314966
Diabetes. 2010 Jan;59(1):249-55
pubmed: 19833897
Vaccine. 1997 Apr;15(5):511-8
pubmed: 9160518
Sci Rep. 2016 Feb 24;6:22064
pubmed: 26907999
Cell Rep. 2022 May 3;39(5):110755
pubmed: 35508125
Nature. 2007 Oct 4;449(7162):564-9
pubmed: 17873860
Science. 2017 Nov 17;358(6365):888-893
pubmed: 29146805
F1000Res. 2017 Feb 1;6:98
pubmed: 28184299
Nat Immunol. 2021 Feb;22(2):108-110
pubmed: 33398180
J Clin Invest. 2017 Nov 1;127(11):4124-4135
pubmed: 28990935
Front Immunol. 2019 Jan 28;10:41
pubmed: 30745902
J Immunol. 2018 Jul 15;201(2):652-662
pubmed: 29784761
Biochim Biophys Acta. 1991 Jul 22;1071(2):103-22
pubmed: 1854791
Cell. 2011 Dec 9;147(6):1355-68
pubmed: 22153078
Trends Cell Biol. 2008 Nov;18(11):552-9
pubmed: 18848451
Mol Immunol. 2015 May;65(1):177-88
pubmed: 25660970
Nat Immunol. 2020 Aug;21(8):880-891
pubmed: 32541830
Immunol Rev. 2020 Sep;297(1):139-161
pubmed: 32677123
J Exp Med. 1995 Sep 1;182(3):841-51
pubmed: 7650490
Cell. 2011 Dec 23;147(7):1442-5
pubmed: 22196723
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5910-E5919
pubmed: 28679634
PLoS One. 2020 Nov 24;15(11):e0238484
pubmed: 33232321
Nat Commun. 2020 Jun 24;11(1):3276
pubmed: 32581219
J Exp Med. 2017 Aug 7;214(8):2231-2241
pubmed: 28663435
Blood. 2012 Nov 1;120(18):3699-707
pubmed: 22927244
J Leukoc Biol. 2018 Oct;104(4):729-735
pubmed: 30020539
J Biol Chem. 2009 Aug 28;284(35):23818-29
pubmed: 19570976
EMBO J. 2019 Jul 1;38(13):e100926
pubmed: 31268602
Biophys J. 2007 Dec 15;93(12):4225-36
pubmed: 17766354
Front Immunol. 2020 Nov 18;11:581165
pubmed: 33312172
Nat Immunol. 2021 Feb;22(2):140-153
pubmed: 33349708
Immunity. 2018 Oct 16;49(4):740-753.e7
pubmed: 30314759
Science. 2018 Apr 6;360(6384):
pubmed: 29622626
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12889-94
pubmed: 14561893
Open Biol. 2021 Nov;11(11):210194
pubmed: 34753318
Nature. 2014 May 15;509(7500):366-70
pubmed: 24739961
Sci Signal. 2021 Mar 09;14(673):
pubmed: 33688080
Biochim Biophys Acta Mol Basis Dis. 2021 Oct 1;1867(10):166184
pubmed: 34087422
Nature. 2014 May 8;509(7499):240-4
pubmed: 24695226
Immunity. 2006 Oct;25(4):607-17
pubmed: 17027300
Sci Transl Med. 2011 Mar 9;3(73):73ra19
pubmed: 21389263
Immunity. 1995 Dec;3(6):783-91
pubmed: 8777723
Science. 2008 Nov 14;322(5904):1097-100
pubmed: 19008445
Nature. 1993 Jan 28;361(6410):359-62
pubmed: 7678924
J Immunol. 1994 Dec 1;153(11):4925-33
pubmed: 7963555
J Lipid Res. 1971 Nov;12(6):662-70
pubmed: 5124531
J Immunol. 1996 Jun 1;156(11):4182-90
pubmed: 8666786
EMBO J. 2008 Jan 9;27(1):201-11
pubmed: 18046456
Annu Rev Immunol. 2013;31:443-73
pubmed: 23298205
Immunity. 2014 Nov 20;41(5):830-42
pubmed: 25517615
mBio. 2017 Oct 3;8(5):
pubmed: 28974614
J Immunol. 2020 Jan 1;204(1):87-100
pubmed: 31776205
Cell Res. 2015 Dec;25(12):1285-98
pubmed: 26611636
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3029-34
pubmed: 18272486
Science. 2018 Nov 9;362(6415):694-699
pubmed: 30409884
Nature. 2009 Apr 16;458(7240):899-903
pubmed: 19219027
Nature. 2009 Nov 5;462(7269):99-103
pubmed: 19890330
Immunity. 2021 Mar 9;54(3):454-467.e6
pubmed: 33561388
Curr Opin Immunol. 2001 Aug;13(4):437-41
pubmed: 11498299
Nat Rev Mol Cell Biol. 2009 Sep;10(9):623-35
pubmed: 19672277
Immunity. 2015 May 19;42(5):850-63
pubmed: 25979419
J Immunol. 2006 Jul 15;177(2):983-90
pubmed: 16818754
Cell Mol Immunol. 2022 Jan;19(1):3-13
pubmed: 34480145
Immunol Rev. 2016 Sep;273(1):156-79
pubmed: 27558334
J Cell Biol. 2001 Jan 8;152(1):165-80
pubmed: 11149929
Curr Opin Immunol. 2017 Jun;46:89-96
pubmed: 28528219
Biomed Rep. 2016 May;4(5):528-534
pubmed: 27123243
Cancer Cell. 2018 May 14;33(5):862-873.e5
pubmed: 29706455
Immunity. 2000 Jul;13(1):117-27
pubmed: 10933400
Eur J Cell Biol. 2017 Oct;96(7):705-714
pubmed: 28688576
Cell. 2016 May 19;165(5):1106-1119
pubmed: 27156449
Cell. 2021 Jul 22;184(15):4016-4031.e22
pubmed: 34081922
Science. 2004 Jun 4;304(5676):1515-8
pubmed: 15178804
Science. 1995 Jan 13;267(5195):243-6
pubmed: 7809629
Science. 1994 May 13;264(5161):961-5
pubmed: 7513904
Nat Commun. 2016 Apr 06;7:11284
pubmed: 27050483
Oxid Med Cell Longev. 2016;2016:9348651
pubmed: 27313835
Immunity. 2021 Jun 8;54(6):1154-1167.e7
pubmed: 33979578
Annu Rev Immunol. 2015;33:257-90
pubmed: 25581309
Beilstein J Nanotechnol. 2020 Jan 9;11:101-123
pubmed: 31976201
Nature. 1999 Mar 4;398(6722):77-80
pubmed: 10078533
Science. 2020 Jan 17;367(6475):301-305
pubmed: 31806695
Traffic. 2018 Dec;19(12):965-974
pubmed: 30159984
Am J Physiol Endocrinol Metab. 2001 May;280(5):E685-94
pubmed: 11287350
Cell Rep. 2018 Jul 10;24(2):419-428
pubmed: 29996102
Mol Microbiol. 2021 Dec;116(6):1420-1432
pubmed: 34738270

Auteurs

Gerone A Gonzales (GA)

Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Johnathan Canton (J)

Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.

Articles similaires

Endometriosis Female Humans Animals Mice
Dendritic Cells Animals Cross-Priming Mice Mice, Inbred C57BL
Humans Stomach Neoplasms Macrophages Tumor Microenvironment Disease Progression
NLR Family, Pyrin Domain-Containing 3 Protein Autophagy Inflammasomes Interleukin-1beta Animals

Classifications MeSH