SPP1+ macrophages and FAP+ fibroblasts promote the progression of pMMR gastric cancer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 12 02 2024
accepted: 11 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Immunotherapy has become a primary and secondary treatment for gastric cancer (GC) patients with mismatch repair deficiency (dMMR), and is used in both perioperative and advanced stages. The tumor immune microenvironment (TiME) is crucial for immunotherapy efficacy, yet the impact of MMR status on TiME remains understudied. We employed single-cell RNA sequencing (scRNA-seq) to analyze 33 fresh tissue samples from 25 patients, which included 10 normal tissues, 6 dMMR tumor tissues, and 17 pMMR tumor tissues, aiming to characterize the cellular and molecular components of the TiME. The proficient mismatch repair (pMMR) group displayed a significantly higher prevalence of a specific GC cell type, termed GC2, characterized by increased hypoxia, epithelial-mesenchymal transition (EMT), and angiogenic activities compared to the dMMR group. GC2 cells overexpressed BEX3 and GPC3, and they significantly correlated with poorer survival. The pMMR group also showed increased infiltration of SPP1 + macrophages and FAP + fibroblasts, exhibiting strong hypoxic and pro-angiogenic features. Furthermore, a higher proportion of E2 endothelial cells, involved in extracellular matrix (ECM) remodeling and showing heightened VEGF pathway, HIF pathway, and angiogenesis activity, were identified in pMMR patients. Intercellular communication analyses revealed that GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells interact through VEGF, SPP1, and MIF signals, forming a TiME characterized by hypoxia, pro-angiogenesis, and ECM remodeling. This study uncovered TiME heterogeneity among GC patients with different MMR states, highlighting that the pMMR TiME is distinguished by hypoxia, pro-angiogenesis, and ECM remodeling, driven by the presence of GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells. These findings are pivotal for developing targeted immunotherapies for GC patients with pMMR.

Identifiants

pubmed: 39482333
doi: 10.1038/s41598-024-76298-w
pii: 10.1038/s41598-024-76298-w
doi:

Substances chimiques

fibroblast activation protein alpha EC 3.4.21.-
Gelatinases EC 3.4.24.-
Membrane Proteins 0
Endopeptidases EC 3.4.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26221

Subventions

Organisme : Joint Funds for the Innovation of Science and Technology, Fujian Province
ID : No.2023Y9342
Organisme : Special Grant for Education and Scientific Research of Fujian Provincial Department of Finance
ID : Fujian Finance Document (2023) 834

Informations de copyright

© 2024. The Author(s).

Références

Sung, H. et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660 (2021).
doi: 10.3322/caac.21660 pubmed: 33538338
Thrift, A. P., Wenker, T. N. & El-Serag, H. B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol. 20, 338–349. https://doi.org/10.1038/s41571-023-00747-0 (2023).
doi: 10.1038/s41571-023-00747-0 pubmed: 36959359
Guan, W. L., He, Y. & Xu, R. H. Gastric cancer treatment: Recent progress and future perspectives. J. Hematol. Oncol. https://doi.org/10.1186/s13045-023-01451-3 (2023).
doi: 10.1186/s13045-023-01451-3 pubmed: 37507780 pmcid: 10385919
Kang, Y. K. et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23, 234–247. https://doi.org/10.1016/s1470-2045(21)00692-6 (2022).
doi: 10.1016/s1470-2045(21)00692-6 pubmed: 35030335
Shitara, K. et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 6, 1571–1580. https://doi.org/10.1001/jamaoncol.2020.3370 (2020).
doi: 10.1001/jamaoncol.2020.3370 pubmed: 32880601
Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 398, 27–40. https://doi.org/10.1016/s0140-6736(21)00797-2 (2021).
doi: 10.1016/s0140-6736(21)00797-2 pubmed: 34102137 pmcid: 8436782
Liu, T. et al. First-line nivolumab plus chemotherapy vs chemotherapy in patients with advanced gastric, gastroesophageal junction and esophageal adenocarcinoma: CheckMate 649 Chinese subgroup analysis. Int. J. Cancer. 152, 749–760. https://doi.org/10.1002/ijc.34296 (2023).
doi: 10.1002/ijc.34296 pubmed: 36121651
Janjigian, Y. Y. et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 600, 727–730. https://doi.org/10.1038/s41586-021-04161-3 (2021).
doi: 10.1038/s41586-021-04161-3 pubmed: 34912120 pmcid: 8959470
Janjigian, Y. Y. et al. Pembrolizumab plus Trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: Interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet 402, 2197–2208. https://doi.org/10.1016/s0140-6736(23)02033-0 (2023).
doi: 10.1016/s0140-6736(23)02033-0 pubmed: 37871604
Germano, G., Amirouchene-Angelozzi, N., Rospo, G. & Bardelli, A. The clinical impact of the genomic Landscape of Mismatch repair–deficient cancers. Cancer Discov. 8, 1518–1528. https://doi.org/10.1158/2159-8290.CD-18-0150 (2018).
doi: 10.1158/2159-8290.CD-18-0150 pubmed: 30442708
Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346. https://doi.org/10.1038/nrm1907 (2006).
doi: 10.1038/nrm1907 pubmed: 16612326
Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: A pan-cancer analysis. Lancet Oncol. 18, 1009–1021. https://doi.org/10.1016/S1470-2045(17)30516-8 (2017).
doi: 10.1016/S1470-2045(17)30516-8 pubmed: 28694034
Amodio, V. et al. Mechanisms of Immune escape and resistance to checkpoint inhibitor therapies in Mismatch Repair deficient metastatic colorectal cancers. Cancers 13(11), 2638. https://www.mdpi.com/2072-6694/13/11/2638 (2021).
Chao, J. et al. Assessment of Pembrolizumab Therapy for the treatment of microsatellite instability-high gastric or gastroesophageal Junction Cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol. 7, 895–902. https://doi.org/10.1001/jamaoncol.2021.0275 (2021).
doi: 10.1001/jamaoncol.2021.0275 pubmed: 33792646 pmcid: 8017478
Nappo, F. et al. Pattern of recurrence and overall survival in esophagogastric cancer after perioperative FLOT and clinical outcomes in MSI-H population: The PROSECCO Study. J. Cancer Res. Clin. Oncol. 149, 6601–6611. https://doi.org/10.1007/s00432-023-04636-y (2023).
doi: 10.1007/s00432-023-04636-y pubmed: 36795195 pmcid: 10356632
Baretti, M. & Le, D. T. DNA mismatch repair in cancer. Pharmacol. Ther. 189, 45–62. https://doi.org/10.1016/j.pharmthera.2018.04.004 (2018).
doi: 10.1016/j.pharmthera.2018.04.004 pubmed: 29669262
Lee, K. S. et al. Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer. Cancer Immunol. Immunother. 66, 927–939. https://doi.org/10.1007/s00262-017-1999-6 (2017).
doi: 10.1007/s00262-017-1999-6 pubmed: 28405764 pmcid: 11028600
Fuchs, C. S. et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated Advanced gastric and gastroesophageal Junction Cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4, e180013. https://doi.org/10.1001/jamaoncol.2018.0013 (2018).
doi: 10.1016/s0140-6736(18)31257-1 pubmed: 29543932 pmcid: 5885175
Shitara, K. et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 392, 123–133. https://doi.org/10.1016/s0140-6736(18)31257-1 (2018).
doi: 10.1016/s0140-6736(18)31257-1 pubmed: 29880231
Riba, M. B. et al. NCCN Guidelines
doi: 10.6004/jnccn.2023.0026 pubmed: 37156476
Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 364, 485–491. https://doi.org/10.1126/science.aau0447 (2019).
doi: 10.1126/science.aau0447 pubmed: 31048490 pmcid: 6685207
Roudko, V. et al. Lynch Syndrome and MSI-H cancers: from mechanisms to off-the-Shelf Cancer vaccines. Front. Immunol. 12, 757804. https://doi.org/10.3389/fimmu.2021.757804 (2021).
doi: 10.3389/fimmu.2021.757804 pubmed: 34630437 pmcid: 8498209
He, Y., Zhang, L., Zhou, R., Wang, Y. & Chen, H. The role of DNA mismatch repair in immunotherapy of human cancer. Int. J. Biol. Sci. 18, 2821–2832. https://doi.org/10.7150/ijbs.71714 (2022).
doi: 10.7150/ijbs.71714 pubmed: 35541922 pmcid: 9066103
Suvà, M. L. & Tirosh, I. Single-cell RNA sequencing in Cancer: Lessons learned and Emerging challenges. Mol. Cell. 75, 7–12. https://doi.org/10.1016/j.molcel.2019.05.003 (2019).
doi: 10.1016/j.molcel.2019.05.003 pubmed: 31299208
Jiang, H. et al. Revealing the transcriptional heterogeneity of organ-specific metastasis in human gastric cancer using single-cell RNA sequencing. Clin. Transl Med. 12, e730. https://doi.org/10.1002/ctm2.730 (2022).
doi: 10.1002/ctm2.730 pubmed: 35184420 pmcid: 8858624
Li, Y. et al. Single-cell landscape reveals active cell subtypes and their interaction in the tumor microenvironment of gastric cancer. Theranostics. 12, 3818–3833. https://doi.org/10.7150/thno.71833 (2022).
doi: 10.7150/thno.71833 pubmed: 35664061 pmcid: 9131288
Zhang, M. et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut. 70, 464–475. https://doi.org/10.1136/gutjnl-2019-320368 (2021).
doi: 10.1136/gutjnl-2019-320368 pubmed: 32532891
Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 112285. https://doi.org/10.1038/s41467-020-16164-1 (2020).
Jimenez-Rodriguez, R. M. et al. Quantitative assessment of tumor-infiltrating lymphocytes in mismatch repair proficient colon cancer. Oncoimmunology. 9, 1841948. https://doi.org/10.1080/2162402x.2020.1841948 (2020).
doi: 10.1080/2162402x.2020.1841948 pubmed: 33235819 pmcid: 7671050
Bhamidipati, D. & Subbiah, V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer. 9, 828–839. https://doi.org/10.1016/j.trecan.2023.07.002 (2023).
doi: 10.1016/j.trecan.2023.07.002 pubmed: 37517955
Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51. https://doi.org/10.1158/2159-8290.Cd-14-0863 (2015).
doi: 10.1158/2159-8290.Cd-14-0863 pubmed: 25358689
Kang, J. H. & Zappasodi, R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer. 9, 911–927. https://doi.org/10.1016/j.trecan.2023.07.015 (2023).
doi: 10.1016/j.trecan.2023.07.015 pubmed: 37598003
Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat. Commun. 131742. https://doi.org/10.1038/s41467-022-29366-6 (2022).
Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807. https://doi.org/10.1038/s43018-022-00411-z (2022).
doi: 10.1038/s43018-022-00411-z pubmed: 35883004 pmcid: 7613625
Kumar, V. et al. Single-cell atlas of Lineage States, tumor microenvironment, and subtype-specific expression programs in gastric Cancer. Cancer Discov. 12, 670–691. https://doi.org/10.1158/2159-8290.Cd-21-0683 (2022).
doi: 10.1158/2159-8290.Cd-21-0683 pubmed: 34642171 pmcid: 9394383
de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41, 374–403. https://doi.org/10.1016/j.ccell.2023.02.016 (2023).
doi: 10.1016/j.ccell.2023.02.016 pubmed: 36917948
Taieb, J. et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 175, 136–157. https://doi.org/10.1016/j.ejca.2022.07.020 (2022).
doi: 10.1016/j.ejca.2022.07.020 pubmed: 36115290
Wu, T. et al. Single-cell sequencing reveals the immune microenvironment landscape related to anti-PD-1 resistance in metastatic colorectal cancer with high microsatellite instability. BMC Med. 21161. https://doi.org/10.1186/s12916-023-02866-y (2023).
Chida, K. et al. Transcriptomic profiling of MSI-H/dMMR gastrointestinal tumors to identify determinants of responsiveness to Anti-PD-1 therapy. Clin. Cancer Res. 28, 2110–2117. https://doi.org/10.1158/1078-0432.Ccr-22-0041 (2022).
doi: 10.1158/1078-0432.Ccr-22-0041 pubmed: 35254400 pmcid: 9365358
Shimizu, Y. et al. Cancer immunotherapy-targeted glypican-3 or neoantigens. Cancer Sci. 109, 531–541. https://doi.org/10.1111/cas.13485 (2018).
doi: 10.1111/cas.13485 pubmed: 29285841 pmcid: 5834776
Yu, M. et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol. Ther. 26, 366–378. https://doi.org/10.1016/j.ymthe.2017.12.012 (2018).
doi: 10.1016/j.ymthe.2017.12.012 pubmed: 29339014
Alahdal, M. & Elkord, E. Non-coding RNAs in cancer immunotherapy: Predictive biomarkers and targets. Clin. Transl Med. 13, e1425. https://doi.org/10.1002/ctm2.1425 (2023).
doi: 10.1002/ctm2.1425 pubmed: 37735815 pmcid: 10514379
Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell. 39, 96–108. https://doi.org/10.1016/j.ccell.2020.11.006 (2021).
doi: 10.1016/j.ccell.2020.11.006 pubmed: 33338425
Oliveira, G. & Wu, C. J. Dynamics and specificities of T cells in cancer immunotherapy. Nat. Rev. Cancer 23, 295–316. https://doi.org/10.1038/s41568-023-00560-y (2023).
doi: 10.1038/s41568-023-00560-y pubmed: 37046001 pmcid: 10773171
Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 22, 48. https://doi.org/10.1186/s12943-023-01744-8 (2023).
doi: 10.1186/s12943-023-01744-8 pubmed: 36906534 pmcid: 10007858
Nasir, I. et al. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol. 44, 971–985. https://doi.org/10.1016/j.it.2023.10.007 (2023).
doi: 10.1016/j.it.2023.10.007 pubmed: 37995659
Liu, Y. et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J. Hepatol. 78, 770–782. https://doi.org/10.1016/j.jhep.2023.01.011 (2023).
doi: 10.1016/j.jhep.2023.01.011 pubmed: 36708811
Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to Immunotherapy Resistance in Cancer. Cancer Discov. 10, 1330–1351. https://doi.org/10.1158/2159-8290.Cd-19-1384 (2020).
doi: 10.1158/2159-8290.Cd-19-1384 pubmed: 32434947
Zhao, L. et al. Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics 12, 1557–1569. https://doi.org/10.7150/thno.69475 (2022).
doi: 10.7150/thno.69475 pubmed: 35198057 pmcid: 8825585
Kim, J. et al. Microfluidic one-directional interstitial flow generation from cancer to cancer associated fibroblast. Acta Biomater. 144, 258–265. https://doi.org/10.1016/j.actbio.2022.03.044 (2022).
doi: 10.1016/j.actbio.2022.03.044 pubmed: 35364320
Zhang, Z. et al. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med. 1445. https://doi.org/10.1186/s13073-022-01050-w (2022).
Li, X. et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12, 620–638. https://doi.org/10.7150/thno.60540 (2022).
doi: 10.7150/thno.60540 pubmed: 34976204 pmcid: 8692898
Hu, C. et al. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51, D870-d876. https://doi.org/10.1093/nar/gkac947 (2023).
doi: 10.1093/nar/gkac947 pubmed: 36300619
Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374abe6474. https://doi.org/10.1126/science.abe6474 (2021).
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088. https://doi.org/10.1038/s41467-021-21246-9 (2021).
doi: 10.1038/s41467-021-21246-9 pubmed: 33597522 pmcid: 7889871
Liu, C. J. et al. GSCA: An integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief. Bioinform. 24. https://doi.org/10.1093/bib/bbac558 (2023).

Auteurs

Zhixiong Su (Z)

Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.

Yufang He (Y)

Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.

Lijie You (L)

Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.

Jingbo Chen (J)

Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China. 13635294192@163.com.

Guifeng Zhang (G)

Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China. 984386537@qq.com.

Zhenhua Liu (Z)

Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China. liuzhenhua6909@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH