Synthesis and Anticancer Potential of New Hydroxamic Acid Derivatives as Chemotherapeutic Agents.
Anticancer
Enzyme activity
HDAC inhibitors
Hydroxamic acid
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
accepted:
15
07
2022
pubmed:
3
8
2022
medline:
2
12
2022
entrez:
2
8
2022
Statut:
ppublish
Résumé
Histone deacetylase (HDAC) inhibitors have been shown to induce differentiation, cell cycle arrest, and apoptosis due to their low toxicity, inhibiting migration, invasion, and angiogenesis in many cancer cells. Studies show that hydroxamic acids are generally used as anticancers. For this reason, it is aimed to synthesize new derivatives of hydroxamic acids, to examine the anticancer properties of these candidate inhibitors, and to investigate the inhibition effects on some enzymes that cause multidrug resistance in cancer cells. For this reason, new (4-amino-2-methoxy benzohydroxamic acid (a), 4-amino-3-methyl benzohydroxamic acid (b), 3-amino-5-methyl benzohydroxamic acid (c)) amino benzohydroxamic acid derivatives were synthesized in this study. The effects on healthy fibroblast, lung (A549), and cervical (HeLa) cancer cells were investigated. In addition, their effects on TRXR1, GST, and GR activities, which are important for the development of chemotherapeutic strategies, were also examined. It was determined that molecule b was the most effective molecule in HeLa cancer cells with the lowest IC
Identifiants
pubmed: 35917102
doi: 10.1007/s12010-022-04107-z
pii: 10.1007/s12010-022-04107-z
doi:
Substances chimiques
Hydroxamic Acids
0
Histone Deacetylase Inhibitors
0
Antineoplastic Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6349-6366Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
World Health Organization. (2020). International Agency for Research on Cancer. Retrieved from https://gco.iarc.fr/
Fitzmaurice, C., Dicker, D., Pain, A., Hamavid, H., Moradi-Lakeh, M., MacIntyre, M. F., & Naghavi, M. (2015). The global burden of cancer 2013. JAMA Oncology, 1(4), 505. https://doi.org/10.1001/jamaoncol.2015.0735
doi: 10.1001/jamaoncol.2015.0735
pubmed: 26181261
Pavlopoulou, A., Spandidos, D. A., & Michalopoulos, I. (2015). Human cancer databases (Review). Oncology Reports, 33(1), 3–18. https://doi.org/10.3892/or.2014.3579
doi: 10.3892/or.2014.3579
pubmed: 25369839
Baykara, O. (2016). Current modalities in treatment of cancer. Balıkesır Health Sciences Journal, 5(3), 154–165. https://doi.org/10.5505/bsbd.2016.93823
doi: 10.5505/bsbd.2016.93823
Hong, J.-M., Suh, S.-S., Kim, T., Kim, J., Han, S., Youn, U., & Kim, I.-C. (2018). Anti-cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum. Molecules, 23(3), 658. https://doi.org/10.3390/molecules23030658
doi: 10.3390/molecules23030658
pubmed: 29538328
pmcid: 6017138
Szakács, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nature Reviews Drug Discovery, 5(3), 219–234. https://doi.org/10.1038/nrd1984
doi: 10.1038/nrd1984
pubmed: 16518375
Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of multidrug resistance in cancer chemotherapy. International Journal of Molecular Sciences, 21(9), 3233. https://doi.org/10.3390/ijms21093233
doi: 10.3390/ijms21093233
pubmed: 32370233
pmcid: 7247559
Çalışkan, B., Öztürk Kesebir, A., Demir, Y., & Akyol Salman, I. (2022). The effect of brimonidine and proparacaine on metabolic enzymes: glucose‐6‐phosphate dehydrogenase, 6‐phosphogluconate dehydrogenase, and glutathione reductase. Biotechnology and Applied Biochemistry, 69(1), 281–288.
Ceylan, H., Demir, Y., & Beydemir, Ş. (2019). Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an in vitro study. Protein and Peptide Letters, 26(5), 364–370.
Zimmermann, A. K., Loucks, F. A., Schroeder, E. K., Bouchard, R. J., Tyler, K. L., & Linseman, D. A. (2007). Glutathione binding to the Bcl-2 homology-3 domain groove. Journal of Biological Chemistry, 282(40), 29296–29304. https://doi.org/10.1074/jbc.M702853200
doi: 10.1074/jbc.M702853200
pubmed: 17690097
Kowaltowski, A. J., & Fiskum, G. (2005). Redox mechanisms of cytoprotection by Bcl-2. Antioxidants & Redox Signaling, 7(3–4), 508–514. https://doi.org/10.1089/ars.2005.7.508
doi: 10.1089/ars.2005.7.508
Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390(3), 191–214. https://doi.org/10.1515/BC.2009.033
Jee, C., Vanoaica, L., Lee, J., Park, B. J., & Ahnn, J. (2005). Thioredoxin is related to life span regulation and oxidative stress response in Caenorhabditis elegans. Genes to Cells, 10(12), 1203–1210. https://doi.org/10.1111/j.1365-2443.2005.00913.x
doi: 10.1111/j.1365-2443.2005.00913.x
pubmed: 16324156
Duan, D., Zhang, J., Yao, J., Liu, Y., & Fang, J. (2016). Targeting thioredoxin reductase by parthenolide contributes to inducing apoptosis of HeLa cells. Journal of Biological Chemistry, 291(19), 10021–10031. https://doi.org/10.1074/jbc.M115.700591
doi: 10.1074/jbc.M115.700591
pubmed: 27002142
pmcid: 4858956
TOPAL, T., Şükrü ÖTER, & Ahmet KORKMAZ.(2009). Melatonin ve kanserle ilişkisi, 19(3), 137–143. Retrieved from https://app.trdizin.gov.tr/makale/T1Rjd01EVTE/melatonin-ve-kanserle-iliskisi -
Yoon, S., & Eom, G. H. (2016). HDAC and HDAC inhibitor: From cancer to cardiovascular diseases. Chonnam Medical Journal, 52(1), 1. https://doi.org/10.4068/cmj.2016.52.1.1
doi: 10.4068/cmj.2016.52.1.1
pubmed: 26865995
pmcid: 4742605
Sanaei, M., & Kavoosi, F. (2019). Histone deacetylases and histone deacetylase inhibitors: Molecular mechanisms of action in various cancers. Advanced Biomedical Research, 8(1), 63. https://doi.org/10.4103/abr.abr_142_19
doi: 10.4103/abr.abr_142_19
pubmed: 31737580
pmcid: 6839273
Seo, J.-Y., Park, Y.-J., Yi, Y.-A., Hwang, J.-Y., Lee, I.-B., Cho, B.-H., & Seo, D.-G. (2015). Epigenetics: General characteristics and implications for oral health. Restorative Dentistry & Endodontics, 40(1), 14. https://doi.org/10.5395/rde.2015.40.1.14
doi: 10.5395/rde.2015.40.1.14
Barneda-Zahonero, B., & Parra, M. (2012). Histone deacetylases and cancer. Molecular Oncology, 6(6), 579–589. https://doi.org/10.1016/j.molonc.2012.07.003
doi: 10.1016/j.molonc.2012.07.003
pubmed: 22963873
pmcid: 5528343
Chaiyaveij, D., Batsanov, A. S., Fox, M. A., Marder, T. B., & Whiting, A. (2015). An experimental and computational approach to understanding the reactions of acyl nitroso compounds in [4 + 2] cycloadditions. The Journal of Organic Chemistry, 80(19), 9518–9534. https://doi.org/10.1021/acs.joc.5b01470
doi: 10.1021/acs.joc.5b01470
pubmed: 26340265
Yamada, H., Kojo, M., Nakahara, T., Murakami, K., Kakima, T., Ichiba, H., & Fukushima, T. (2012). Development of a fluorescent chelating ligand for scandium ion having a Schiff base moiety. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 72–77. https://doi.org/10.1016/j.saa.2012.01.014
doi: 10.1016/j.saa.2012.01.014
pubmed: 22316617
Volz, H. C., Laohachewin, D., Seidel, C., Lasitschka, F., Keilbach, K., Wienbrandt, A. R., & Andrassy, M. (2012). S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling. Basic Research in Cardiology, 107(2), 250. https://doi.org/10.1007/s00395-012-0250-z
doi: 10.1007/s00395-012-0250-z
pubmed: 22318783
You, B. R., & Park, W. H. (2017). Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Molecular Carcinogenesis, 56(12), 2566–2577. https://doi.org/10.1002/mc.22701
doi: 10.1002/mc.22701
pubmed: 28667779
Shankaranarayanan, P., & Nigam, S. (2003). IL-4 induces apoptosis in A549 lung adenocarcinoma cells: Evidence for the pivotal role of 15-hydroxyeicosatetraenoic acid binding to activated peroxisome proliferator-activated receptor γ transcription factor. The Journal of Immunology, 170(2), 887–894. https://doi.org/10.4049/jimmunol.170.2.887
doi: 10.4049/jimmunol.170.2.887
pubmed: 12517954
Holmgren, A. (1977). Bovine thioredoxin system.Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. The Journal of biological chemistry, 252(13), 4600–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17603
Holmgren, A., Arner, E., & Bjornstedt, M. (1995).Thioredoxin and thioredoxin reductase. Methods Enzymol, 252, 199–208.
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. Journal of Biological Chemistry, 249(22), 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8
doi: 10.1016/S0021-9258(19)42083-8
pubmed: 4436300
Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250(14), 5475–5480. https://doi.org/10.1016/S0021-9258(19)41206-4
doi: 10.1016/S0021-9258(19)41206-4
pubmed: 237922
Liu, W., Liang, Y., & Si, X. (2020). Hydroxamic acid hybrids as the potential anticancer agents: An Overview. European Journal of Medicinal Chemistry, 205, 112679. https://doi.org/10.1016/j.ejmech.2020.112679
doi: 10.1016/j.ejmech.2020.112679
pubmed: 32791404
Li, J.-Q., Chen, C., Yao, M., Sun, L.-Y., Gao, H., Chigan, J., & Yang, K.-W. (2020). Hydroxamic acid with benzenesulfonamide: An effective scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors. Bioorganic Chemistry, 105, 104436. https://doi.org/10.1016/j.bioorg.2020.104436
doi: 10.1016/j.bioorg.2020.104436
pubmed: 33171408
Chattopadhyay, S. K., Ghosh, S., Sarkar, S., & Bhadra, K. (2019). α, ß-Didehydrosuberoylanilide hydroxamic acid (DDSAHA) as precursor and possible analogue of the anticancer drug SAHA. Beilstein Journal of Organic Chemistry, 15, 2524–2533. https://doi.org/10.3762/bjoc.15.245
doi: 10.3762/bjoc.15.245
pubmed: 31728166
pmcid: 6839567
Cao, J., Zang, J., Ma, C., Li, X., Hou, J., Li, J., & Zhang, Y. (2018). Design, synthesis, and biological evaluation of pyrazoline-based hydroxamic acid derivatives as aminopeptidase N (APN) inhibitors. ChemMedChem, 13(5), 431–436. https://doi.org/10.1002/cmdc.201700690
doi: 10.1002/cmdc.201700690
pubmed: 29377564
Song, J., Noh, J. H., Lee, J. H., Eun, J. W., Ahn, Y. M., Kim, S. Y., & Nam, S. W. (2005). Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS, 113(4), 264–268. https://doi.org/10.1111/j.1600-0463.2005.apm_04.x
doi: 10.1111/j.1600-0463.2005.apm_04.x
pubmed: 15865607
Halkidou, K., Gaughan, L., Cook, S., Leung, H. Y., Neal, D. E., & Robson, C. N. (2004). Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. The Prostate, 59(2), 177–189. https://doi.org/10.1002/pros.20022
doi: 10.1002/pros.20022
pubmed: 15042618
Zhu, P., Martin, E., Mengwasser, J., Schlag, P., Janssen, K.-P., & Göttlicher, M. (2004). Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell, 5(5), 455–463. https://doi.org/10.1016/S1535-6108(04)00114-X
doi: 10.1016/S1535-6108(04)00114-X
pubmed: 15144953
You, B. R., & Park, W. H. (2010). Suberoyl bishydroxamic acid inhibits the growth of A549 lung cancer cells via caspase-dependent apoptosis. Molecular and Cellular Biochemistry, 344(1–2), 203–210. https://doi.org/10.1007/s11010-010-0543-1
doi: 10.1007/s11010-010-0543-1
pubmed: 20652372
Zhuang, Z., Fei, F., Chen, Y., & Jin, W. (2008). Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells. Acta Pharmacologica Sinica, 29(12), 1459–1466. https://doi.org/10.1111/j.1745-7254.2008.00906.x
doi: 10.1111/j.1745-7254.2008.00906.x
pubmed: 19026165
Ahmad Ganai, S. (2015). Panobinostat: The small molecule metalloenzyme inhibitor with marvelous anticancer activity. Current Topics in Medicinal Chemistry, 16(4), 427–434. https://doi.org/10.2174/1568026615666150813145800
doi: 10.2174/1568026615666150813145800
Martínez-Iglesias, O., Ruiz-Llorente, L., Sánchez-Martínez, R., García, L., Zambrano, A., & Aranda, A. (2008). Histone deacetylase inhibitors: Mechanism of action and therapeutic use in cancer. Clinical and Translational Oncology, 10(7), 395–398. https://doi.org/10.1007/s12094-008-0221-x
doi: 10.1007/s12094-008-0221-x
pubmed: 18628067
Zhou, X., Yang, X.-Y., & Popescu, N. C. (2012). Preclinical evaluation of combined antineoplastic effect of DLC1 tumor suppressor protein and suberoylanilide hydroxamic acid on prostate cancer cells. Biochemical and Biophysical Research Communications, 420(2), 325–330. https://doi.org/10.1016/j.bbrc.2012.02.158
doi: 10.1016/j.bbrc.2012.02.158
pubmed: 22425986
pmcid: 3322246
Zhang, J., Ouyang, W., Li, J., Zhang, D., Yu, Y., Wang, Y., & Huang, C. (2012). Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability. Toxicology and Applied Pharmacology, 263(2), 218–224. https://doi.org/10.1016/j.taap.2012.06.012
doi: 10.1016/j.taap.2012.06.012
pubmed: 22749963
pmcid: 3758130
Almenara, J., Rosato, R., & Grant, S. (2002). Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia, 16, 1331–1343. https://doi.org/10.1038/sj.leu.2402535
doi: 10.1038/sj.leu.2402535
pubmed: 12094258
Deroanne, C. F., Bonjean, K., Servotte, S., Devy, L., Colige, A., Clausse, N., & Castronovo, V. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene, 21(3), 427–436. https://doi.org/10.1038/sj.onc.1205108
doi: 10.1038/sj.onc.1205108
pubmed: 11821955
Mottamal, M., Zheng, S., Huang, T., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898–3941. https://doi.org/10.3390/molecules20033898
doi: 10.3390/molecules20033898
pubmed: 25738536
pmcid: 4372801
Qian, X., Ara, G., Mills, E., LaRochelle, W. J., Lichenstein, H. S., & Jeffers, M. (2008). Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer. International Journal of Cancer, 122(6), 1400–1410. https://doi.org/10.1002/ijc.23243
doi: 10.1002/ijc.23243
pubmed: 18027850
Khan, O., & La Thangue, N. B. (2012). HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunology & Cell Biology, 90(1), 85–94. https://doi.org/10.1038/icb.2011.100
doi: 10.1038/icb.2011.100
Folmer, F., Orlikova, B., Schnekenburger, M., Dicato, M., & Diederich, M. (2010). Naturally occurring regulators of histone acetylation/deacetylation. Current Nutrition & Food Science, 6(1), 78–99. https://doi.org/10.2174/157340110790909581
doi: 10.2174/157340110790909581
Bassett, S., & Barnett, M. (2014). The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients, 6(10), 4273–4301. https://doi.org/10.3390/nu6104273
doi: 10.3390/nu6104273
pubmed: 25322459
pmcid: 4210916
Losson, H., Schnekenburger, M., Dicato, M., & Diederich, M. (2016). Natural compound histone deacetylase inhibitors (HDACi): Synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules, 21(11), 1608. https://doi.org/10.3390/molecules21111608
doi: 10.3390/molecules21111608
pubmed: 27886118
pmcid: 6274245
Akone, S. H., Ntie-Kang, F., Stuhldreier, F., Ewonkem, M. B., Noah, A. M., Mouelle, S. E. M., & Müller, R. (2020). Natural products impacting DNA methyltransferases and histone deacetylases. Frontiers in Pharmacology, 11, 992.
Myzak, M. C., Karplus, P. A., Chung, F.-L., & Dashwood, R. H. (2004). A novel mechanism of chemoprotection by sulforaphane. Cancer Research, 64(16), 5767–5774. https://doi.org/10.1158/0008-5472.CAN-04-1326
doi: 10.1158/0008-5472.CAN-04-1326
pubmed: 15313918
Darkin-Rattray, S. J., Gurnett, A. M., Myers, R. W., Dulski, P. M., Crumley, T. M., Allocco, J. J., & Schmatz, D. M. (1996). Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase. Proceedings of the National Academy of Sciences, 93(23), 13143–13147. https://doi.org/10.1073/pnas.93.23.13143
doi: 10.1073/pnas.93.23.13143
Liu, J., Wang, T., Wang, X., Luo, L., Guo, J., Peng, Y., & Ling, Y. (2017). Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with DNA damage and apoptosis inducing abilities. MedChemComm, 8(6), 1213–1219. https://doi.org/10.1039/C6MD00681G
doi: 10.1039/C6MD00681G
pubmed: 30108831
pmcid: 6071927
Reddy, N. D., Shoja, M. H., Biswas, S., Nayak, P. G., Kumar, N., & Rao, C. M. (2016). An appraisal of cinnamyl sulfonamide hydroxamate derivatives (HDAC inhibitors) for anti-cancer, anti-angiogenic and anti-metastatic activities in human cancer cells. Chemico-Biological Interactions, 253, 112–124. https://doi.org/10.1016/j.cbi.2016.05.008
doi: 10.1016/j.cbi.2016.05.008
pubmed: 27163855
Zhang, J.-F., Li, M., Miao, J.-Y., & Zhao, B.-X. (2014). Biological activities of novel pyrazolyl hydroxamic acid derivatives against human lung cancer cell line A549. European Journal of Medicinal Chemistry, 83, 516–525. https://doi.org/10.1016/j.ejmech.2014.06.065
doi: 10.1016/j.ejmech.2014.06.065
pubmed: 24996138
Lee, S., Shinji, C., Ogura, K., Shimizu, M., Maeda, S., Sato, M., & Miyachi, H. (2007). Design, synthesis, and evaluation of isoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Bioorganic & Medicinal Chemistry Letters, 17(17), 4895–4900. https://doi.org/10.1016/j.bmcl.2007.06.038
doi: 10.1016/j.bmcl.2007.06.038
Shi, X.-Y., Ding, W., Li, T.-Q., Zhang, Y.-X., & Zhao, S.-C. (2017). Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induces apoptosis in prostate cancer cell lines via the Akt/FOXO3a signaling pathway. Medical Science Monitor, 23, 5793–5802. https://doi.org/10.12659/MSM.904597
doi: 10.12659/MSM.904597
pubmed: 29211704
pmcid: 5727751
You, B. R., & Park, W. H. (2014). Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels. International Journal of Oncology, 44(5), 1745–1755. https://doi.org/10.3892/ijo.2014.2337
doi: 10.3892/ijo.2014.2337
pubmed: 24626405
Librizzi, M., Longo, A., Chiarelli, R., Amin, J., Spencer, J., & Luparello, C. (2012). Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class i histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells. Chemical Research in Toxicology, 25(11), 2608–2616. https://doi.org/10.1021/tx300376h
doi: 10.1021/tx300376h
pubmed: 23094795
Ning, L., Jaskula-Sztul, R., Kunnimalaiyaan, M., & Chen, H. (2008). Suberoyl bishydroxamic acid activates notch1 signaling and suppresses tumor progression in an animal model of medullary thyroid carcinoma. Annals of Surgical Oncology, 15(9), 2600–2605. https://doi.org/10.1245/s10434-008-0006-z
doi: 10.1245/s10434-008-0006-z
pubmed: 18563491
pmcid: 2737668
Han, H., Li, J., Feng, X., Zhou, H., Guo, S., & Zhou, W. (2017). Autophagy-related genes are induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid via the activation of cathepsin B in human breast cancer cells. Oncotarget, 8(32), 53352–53365. https://doi.org/10.18632/oncotarget.18410
doi: 10.18632/oncotarget.18410
pubmed: 28881816
pmcid: 5581115
Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134(3), 489–492. https://doi.org/10.1093/jn/134.3.489
doi: 10.1093/jn/134.3.489
pubmed: 14988435
Arnér, E. S. (2020). Perspectives of TrxR1-based cancer therapies. In Oxidative stress (pp. 639–667). Academic Press.
Branco, V., Godinho-Santos, A., Gonçalves, J., Lu, J., Holmgren, A., & Carvalho, C. (2014). Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radical Biology and Medicine, 73, 95–105. https://doi.org/10.1016/j.freeradbiomed.2014.04.030
doi: 10.1016/j.freeradbiomed.2014.04.030
pubmed: 24816296
Jia, J.-J., Geng, W.-S., Wang, Z.-Q., Chen, L., & Zeng, X.-S. (2019). The role of thioredoxin system in cancer: Strategy for cancer therapy. Cancer Chemotherapy and Pharmacology, 84(3), 453–470. https://doi.org/10.1007/s00280-019-03869-4
doi: 10.1007/s00280-019-03869-4
pubmed: 31079220
Ouyang, Y., Peng, Y., Li, J., Holmgren, A., & Lu, J. (2018). Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics, 10(2), 218–228. https://doi.org/10.1039/C7MT00327G
doi: 10.1039/C7MT00327G
pubmed: 29410996
Tonissen, K. F., & Di Trapani, G. (2009). Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Molecular Nutrition & Food Research, 53(1), 87–103. https://doi.org/10.1002/mnfr.200700492
doi: 10.1002/mnfr.200700492
Özaslan, M. S., Demir, Y., Aslan, H. E., Beydemir, Ş., & Küfrevioğlu, Ö. İ. (2018). Evaluation of chalcones as inhibitors of glutathione S‐transferase. Journal of Biochemical and Molecular Toxicology, 32(5), e22047.
Özaslan, M. S., Demir, Y., Küfrevioğlu, O. I., & Çiftci, M. (2017). Some metals inhibit the glutathione S‐transferase from Van Lake fish gills. Journal of Biochemical and Molecular Toxicology, 31(11), e21967.
Meister, A., & Anderson, M. E. (1983). GLUTATHIONE. Annual Review of Biochemistry, 52(1), 711–760. https://doi.org/10.1146/annurev.bi.52.070183.003431
doi: 10.1146/annurev.bi.52.070183.003431
pubmed: 6137189
Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29. https://doi.org/10.3322/caac.21254
doi: 10.3322/caac.21254
pubmed: 25559415
Tew, K. D. (1994). Glutathione-associated enzymes in anticancer drug resistance. Cancer research, 54(16), 4313–20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8044778
Harrison, D. J., Kharbanda, R., Bishop, D., McLelland, L. I., & Hayes, J. D. (1989). Glutathione S-transferase isoenzymes in human renal carcinoma demonstrated by immunohistochemistry. Carcinogenesis, 10(7), 1257–1260. https://doi.org/10.1093/carcin/10.7.1257
doi: 10.1093/carcin/10.7.1257
pubmed: 2661044
Tidefelt, U., Elmhorn-Rosenborg, A., Paul, C., Hao, X. Y., Mannervik, B., & Eriksson, L. C. (1992). Expression of glutathione transferase pi as a predictor for treatment results at different stages of acute nonlymphoblastic leukemia. Cancer research, 52(12), 3281–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1596886
Green, J., Robertson, L., & Clark, A. (1993). Glutathione S-transferase expression in benign and malignant ovarian tumours. British Journal of Cancer, 68(2), 235–239. https://doi.org/10.1038/bjc.1993.321
doi: 10.1038/bjc.1993.321
pubmed: 8347477
pmcid: 1968543
Gilbert, L., Elwood, L. J., Merino, M., Masood, S., Barnes, R., Steinberg, S. M., & Moscow, J. A. (1993). A pilot study of pi-class glutathione S-transferase expression in breast cancer: Correlation with estrogen receptor expression and prognosis in node-negative breast cancer. Journal of Clinical Oncology, 11(1), 49–58. https://doi.org/10.1200/JCO.1993.11.1.49
doi: 10.1200/JCO.1993.11.1.49
pubmed: 8418241
Grignon, D. J., Abdel-Malak, M., Mertens, W. C., Sakr, W. A., & Shepherd, R. R. (1994). Glutathione S-transferase expression in renal cell carcinoma: A new marker of differentiation. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 7(2), 186–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8008741
Hamada, S.-I., Kamada, M., Furumoto, H., Hirao, T., & Aono, T. (1994). Expression of glutathione S-transferase-π in human ovarian cancer as an indicator of resistance to chemotherapy. Gynecologic Oncology, 52(3), 313–319. https://doi.org/10.1006/gyno.1994.1055
doi: 10.1006/gyno.1994.1055
pubmed: 8157188
Yang, P., Ebbert, J. O., Sun, Z., & Weinshilboum, R. M. (2006). Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: A review. Journal of Clinical Oncology, 24(11), 1761–1769. https://doi.org/10.1200/JCO.2005.02.7110
doi: 10.1200/JCO.2005.02.7110
pubmed: 16603718
Estrela, J. M., Ortega, A., & Obrador, E. (2006). Glutathione in cancer biology and therapy. Critical Reviews in Clinical Laboratory Sciences, 43(2), 143–181. https://doi.org/10.1080/10408360500523878
doi: 10.1080/10408360500523878
pubmed: 16517421
Türkan, F., Huyut, Z., Demir, Y., Ertaş, F., & Beydemir, Ş. (2019). The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Archives of Physiology and Biochemistry, 125(3), 235–243.
Türkeş, C., Demir, Y., & Beydemir, Ş. (2021). Infection medications: Assessment in‐vitro glutathione S‐Transferase inhibition and molecular docking study. ChemistrySelect, 6(43), 11915–11924.
Türkeş, C., Kesebir Öztürk, A., Demir, Y., Küfrevioğlu, Ö. İ., & Beydemir, Ş. (2021). Calcium channel blockers: The effect of glutathione S‐Transferase enzyme activity and molecular docking studies. ChemistrySelect, 6(40), 11137–11143.
Özaslan, M. S., Demir, Y., Aksoy, M., Küfrevioğlu, Ö. I., & Beydemir, Ş. (2018). Inhibition effects of pesticides on glutathione‐S‐transferase enzyme activity of Van Lake fish liver. Journal of Biochemical and Molecular Toxicology, 32(9), e22196.
Pias, E. K., & Yee Aw, T. (2002). Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production. The FASEB Journal, 16(8), 781–790. https://doi.org/10.1096/fj.01-0784com
doi: 10.1096/fj.01-0784com
pubmed: 12039859
Beutler, E. (1969). Effect of flavin compounds on glutathione reductase activity: In vivo and in vitro studies. Journal of Clinical Investigation, 48(10), 1957–1966. https://doi.org/10.1172/JCI106162
doi: 10.1172/JCI106162
pubmed: 5822598
pmcid: 322432
Lu, J., & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radical Biology and Medicine, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
doi: 10.1016/j.freeradbiomed.2013.07.036
pubmed: 23899494
Liu, Y., Hyde, A. S., Simpson, M. A., & Barycki, J. J. (2014). Emerging regulatory paradigms in glutathione metabolism. Advances in Cancer Research, 122, 69–101.