The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen.
epigenetics
experimental evolution
opportunistic pathogen
prophage induction
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
14
07
2022
received:
01
03
2022
accepted:
21
07
2022
pubmed:
3
8
2022
medline:
12
10
2022
entrez:
2
8
2022
Statut:
ppublish
Résumé
Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.
Identifiants
pubmed: 35917247
doi: 10.1111/mec.16638
pmc: PMC9826266
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5402-5418Informations de copyright
© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
J Bacteriol. 2000 Jul;182(13):3843-5
pubmed: 10851003
Epigenetics. 2022 Aug;17(8):861-881
pubmed: 34519613
PLoS One. 2012;7(8):e43801
pubmed: 22937098
ISME J. 2016 Nov;10(11):2744-2754
pubmed: 27015004
Trends Ecol Evol. 2017 Sep;32(9):681-694
pubmed: 28736043
ISME J. 2017 Jul;11(7):1511-1520
pubmed: 28291233
Environ Microbiol. 2020 Dec;22(12):4919-4933
pubmed: 32935433
Parasitology. 1990;100 Suppl:S103-15
pubmed: 2235060
PLoS Genet. 2009 Dec;5(12):e1000779
pubmed: 20041030
Environ Microbiol. 2013 Sep;15(9):2463-75
pubmed: 23581698
BMC Microbiol. 2012 Mar 09;12:31
pubmed: 22404966
Curr Opin Microbiol. 2017 Aug;38:81-87
pubmed: 28544996
PLoS One. 2011 Mar 15;6(3):e17651
pubmed: 21423610
Bacteriophage. 2016 Feb 18;6(1):e1145782
pubmed: 27144088
Appl Environ Microbiol. 2012 Dec;78(24):8840-4
pubmed: 23042169
ISME J. 2015 Jun;9(6):1352-64
pubmed: 25635642
Microbiologyopen. 2017 Oct;6(5):
pubmed: 28714216
Microbiol Mol Biol Rev. 2003 Jun;67(2):238-76, table of contents
pubmed: 12794192
J Gen Microbiol. 1980 Sep;120(1):173-81
pubmed: 7012273
Nucleic Acids Res. 2016 Aug 19;44(14):6614-24
pubmed: 27342282
Proc Natl Acad Sci U S A. 1989 Jul;86(14):5492-6
pubmed: 2664785
Science. 2012 Jun 22;336(6088):1516-8
pubmed: 22723403
J Bacteriol. 1999 Jul;181(13):3880-5
pubmed: 10383952
Front Microbiol. 2019 Apr 24;10:742
pubmed: 31105650
Sci Rep. 2017 Apr 20;7(1):980
pubmed: 28428555
Front Immunol. 2018 Feb 27;9:319
pubmed: 29535717
Biometrics. 1991 Jun;47(2):467-85
pubmed: 1912256
PLoS One. 2013 Jul 09;8(7):e68562
pubmed: 23874674
Cell. 2019 Oct 3;179(2):459-469.e9
pubmed: 31585083
FEMS Microbiol Lett. 1989 Jul 1;51(1):37-40
pubmed: 2676707
FEMS Microbiol Rev. 2021 Jan 8;45(1):
pubmed: 32897318
Front Microbiol. 2017 Feb 01;8:147
pubmed: 28203234
Evolution. 2009 Jun;63(6):1406-16
pubmed: 19222568
PLoS One. 2017 Jan 24;12(1):e0170734
pubmed: 28118395
Appl Environ Microbiol. 2002 Sep;68(9):4307-14
pubmed: 12200280
Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21
pubmed: 27141966
Sci Rep. 2016 Aug 04;6:30975
pubmed: 27487917
FEMS Microbiol Lett. 2009 Feb;291(2):201-8
pubmed: 19087204
PLoS One. 2014 Nov 03;9(11):e111871
pubmed: 25365586
Evolution. 2013 Oct;67(10):2936-44
pubmed: 24094344
Virulence. 2013 Jul 1;4(5):354-65
pubmed: 23611873
J Virol. 2001 Mar;75(6):2509-15
pubmed: 11222673
Nat Rev Microbiol. 2015 Oct;13(10):641-50
pubmed: 26373372
PLoS One. 2017 Jul 21;12(7):e0180666
pubmed: 28732013
Bioinformatics. 2011 Feb 1;27(3):334-42
pubmed: 21148543
Res Microbiol. 2007 May;158(4):311-7
pubmed: 17490863
PLoS Genet. 2015 Nov 19;11(11):e1005667
pubmed: 26583926
J Clin Microbiol. 1989 Dec;27(12):2702-5
pubmed: 2480362
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12127-32
pubmed: 25092302
EMBO J. 2003 Apr 1;22(7):1451-60
pubmed: 12660152
Environ Microbiol. 2010 Mar;12(3):628-41
pubmed: 20002137
Nat Microbiol. 2018 Jul;3(7):754-766
pubmed: 29867096
Mol Ecol. 2022 Oct;31(20):5402-5418
pubmed: 35917247
Evolution. 2004 Apr;58(4):741-8
pubmed: 15154550
FEMS Microbiol Rev. 2014 Sep;38(5):916-31
pubmed: 24617569
Nat Rev Microbiol. 2007 Oct;5(10):801-12
pubmed: 17853907
BMC Microbiol. 2020 Jan 9;20(1):8
pubmed: 31918661
ISME J. 2016 Feb;10(2):437-49
pubmed: 26296067
Nat Rev Microbiol. 2010 May;8(5):317-27
pubmed: 20348932
Virulence. 2014 Jan 1;5(1):213-8
pubmed: 24193365
J Bacteriol. 1999 Mar;181(6):1767-78
pubmed: 10074068
Trends Microbiol. 2012 Jul;20(7):336-42
pubmed: 22564248
Bacteriophage. 2011 Jan;1(1):31-45
pubmed: 21687533
FEMS Microbiol Rev. 2011 Nov;35(6):993-1034
pubmed: 21204862
J Bacteriol. 1988 Nov;170(11):5146-52
pubmed: 3053645