Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives.
Journal
The journal of physical chemistry letters
ISSN: 1948-7185
Titre abrégé: J Phys Chem Lett
Pays: United States
ID NLM: 101526034
Informations de publication
Date de publication:
18 Aug 2022
18 Aug 2022
Historique:
pubmed:
6
8
2022
medline:
20
8
2022
entrez:
5
8
2022
Statut:
ppublish
Résumé
The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification.
Identifiants
pubmed: 35929598
doi: 10.1021/acs.jpclett.2c01963
pmc: PMC9393888
doi:
Substances chimiques
Tetrapyrroles
0
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7413-7419Références
Nat Chem. 2011 Sep 23;3(10):763-74
pubmed: 21941248
Nat Chem. 2015 Feb;7(2):105-20
pubmed: 25615664
J Chem Phys. 2016 Nov 28;145(20):204109
pubmed: 27908110
Inorg Chem. 2002 Jan 28;41(2):331-41
pubmed: 11800622
J Chem Theory Comput. 2013 Sep 10;9(9):4097-115
pubmed: 26592403
J Phys Chem Lett. 2020 May 7;11(9):3443-3450
pubmed: 32290662
J Photochem Photobiol A Chem. 2008 Dec 15;200(2-3):346-355
pubmed: 20016663
J Chem Phys. 2020 Jul 14;153(2):024105
pubmed: 32668922
Biochemistry. 1991 Apr 23;30(16):3988-4001
pubmed: 2018767
Science. 1994 May 20;264(5162):1105-11
pubmed: 8178169
Chem Soc Rev. 2015 Feb 21;44(4):943-69
pubmed: 24480993
J Am Chem Soc. 2015 Jan 14;137(1):245-58
pubmed: 25514369
J Phys Chem A. 2020 Jan 16;124(2):265-271
pubmed: 31867968
Spectrochim Acta A Mol Biomol Spectrosc. 2006 Oct;65(2):308-23
pubmed: 16920011
J Phys Chem B. 2022 Apr 21;126(15):2899-2911
pubmed: 35389662
J Chem Phys. 2019 Apr 28;150(16):164308
pubmed: 31042882
Methods Mol Biol. 1993;17:345-74
pubmed: 21400146
J Chem Phys. 2021 Aug 7;155(5):054201
pubmed: 34364357
J Chem Phys. 2008 Jun 14;128(22):224311
pubmed: 18554017
J Phys Chem A. 2020 Nov 5;124(44):9156-9165
pubmed: 33103890
J Am Chem Soc. 2022 Apr 13;144(14):6298-6310
pubmed: 35353523
Phys Chem Chem Phys. 2015 Jul 14;17(26):16959-69
pubmed: 26062123
J Phys Chem B. 2016 Sep 8;120(35):9410-21
pubmed: 27494567
Science. 1986 Aug 29;233(4767):948-52
pubmed: 3016897