Oscillometric blood pressure measurements on smartphones using vibrometric force estimation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 18 01 2024
accepted: 01 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

This paper proposes a smartphone-based method for measuring Blood Pressure (BP) using the oscillometric method. For oscillometry, it is necessary to measure (1) the pressure applied to the artery and (2) the local blood volume change. This is accomplished by performing an oscillometric measurement at the finger's digital artery, whereby a user presses down on the phone's camera with steadily increasing force. The camera is used to capture the blood volume change using photoplethysmography. We devised a novel method for measuring the force applied of the finger without the use of specialized smartphone hardware with a technique called Vibrometric Force Estimation (VFE). The fundamental concept of VFE relies on a phenomenon where a vibrating object is dampened when an external force is applied on to it. This phenomenon can be recreated using the phone's own vibration motor and measured using the phone's Inertial Measurement Unit (IMU). A cross device reliability study with three smartphones of different manufacturers, shape, and prices results in similar force estimation performance across all smartphone models. In an N = 24 proof of concept study of the BP measurement, the smartphone technique achieves a mean absolute error of 9.21 mmHg and 7.77 mmHg of systolic and diastolic BP, respectively, compared to an FDA approved BP cuff. The vision for this technology is not necessarily to replace existing BP monitoring solutions, but rather to introduce a downloadable smartphone software application that could serve as a low-barrier hypertension screening measurement fit for widespread adoption.

Identifiants

pubmed: 39482313
doi: 10.1038/s41598-024-75025-9
pii: 10.1038/s41598-024-75025-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26206

Informations de copyright

© 2024. The Author(s).

Références

Shimbo, D. et al. Self-Measured Blood Pressure Monitoring at Home: A Joint Policy Statement From the American Heart Association and American Medical Association. Circulation 142(4), https://doi.org/10.1161/CIR.0000000000000803 (2020) https://www.ahajournals.doi/10.1161/CIR.0000000000000803 .
Dias Junior, A., Murali, S., Rincon, F. & Atienza, D. Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors. Microprocessors and Microsystems 46, 84–95. https://doi.org/10.1016/j.micpro.2016.06.001 (2016) https://linkinghub.elsevier.com/retrieve/pii/S0141933116300667 .
doi: 10.1016/j.micpro.2016.06.001
Frey, L., Menon, C. & Elgendi, M. Blood pressure measurement using only a smartphone. Npj Digit. Med. 5 (1), 86. https://doi.org/10.1038/s41746-022-00629-2 (2022). https://www.nature.com/articles/s41746-022-00629-2
doi: 10.1038/s41746-022-00629-2 pubmed: 35794240 pmcid: 9259682
Joosten, A. et al. Monitoring of pulse pres- sure variation using a new smartphone application (Capstesia) versus stroke volume variation using an uncalibrated pulse wave analysis monitor: a clinical decision making study during major abdominal surgery. J Clin Monit Comput 33(5), 787–793. https://doi.org/10.1007/s10877-018-00241-4 (2019) https://link.springer.com/10.1007/s10877-018-00241-4 .
doi: 10.1007/s10877-018-00241-4 pubmed: 30607806
Junior, A. D., Murali, S., Rincon, F. & Atienza, D. Madeira Estimation of Blood Pressure and Pulse Transit Time Using Your Smartphone. In 2015 Euromicro Conference on Digital System Design 173–180 (IEEE, Portugal, 2015). https://doi.org/10.1109/DSD.2015.90 http://ieeexplore.ieee.org/document/7302267 .
doi: 10.1109/DSD.2015.90
Liu, H., Ivanov, K., Wang, Y. & Wang, L. Toward a Smartphone Application for Estimation of Pulse Transit Time. Sensors. 15 (10), 27303–27321. https://doi.org/10.3390/s151027303 (2015). http://www.mdpi.com/1424-8220/15/10/27303
doi: 10.3390/s151027303 pubmed: 26516861 pmcid: 4634485
Mukkamala, R. et al. Toward ubiquitous blood pressure monitoring via Pulse Transit Time: theory and practice. IEEE Trans. Biomed. Eng. 62 (8), 1879–1901. https://doi.org/10.1109/TBME.2015.2441951 (2015). http://ieeexplore.ieee.org/document/7118672/
doi: 10.1109/TBME.2015.2441951 pubmed: 26057530 pmcid: 4515215
Poon, C. & Zhang, Y. Cuff-less and Noninvasive Measurements of Arterial Blood Pressure by Pulse Transit Time. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 5877–5880 (IEEE, Shanghai, 2005). https://doi.org/10.1109/IEMBS.2005.1615827 http://ieeexplore.ieee.org/document/1615827/ .
doi: 10.1109/IEMBS.2005.1615827
Schoettker, P. et al. Blood pressure measurements with the OptiBP smartphone app validated against reference auscultatory measurements. Sci. Rep. 10 (1), 17827. https://doi.org/10.1038/s41598-020-74955-4 (2020). https://www.nature.com/articles/s41598-020-74955-4
doi: 10.1038/s41598-020-74955-4 pubmed: 33082436 pmcid: 7576142
Chandrasekhar, A. et al. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method. Sci. Transl. Med. 10 (431), eaap8674. https://doi.org/10.1126/scitranslmed.aap8674 (2018).
doi: 10.1126/scitranslmed.aap8674 pubmed: 29515001 pmcid: 6039119
Xuan, Y. et al. Ultra-low-cost mechanical smartphone attachment for no-calibration blood pressure measurement. Sci. Rep. 13 (1), 8105. https://doi.org/10.1038/s41598-023-34431-1 (2023). https://www.nature.com/articles/s41598-023-34431-1
doi: 10.1038/s41598-023-34431-1 pubmed: 37248245 pmcid: 10227087
Chandrasekhar, A., Natarajan, K., Yavarimanesh, M. & Mukkamala, R. An iPhone application for blood pressure monitoring via the Oscillo- 17 metric finger pressing method. Sci. Rep. 8 (1), 13136. https://doi.org/10.1038/s41598-018-31632-x (2018). http://www.nature.com/articles/s41598-018-31632-x
doi: 10.1038/s41598-018-31632-x pubmed: 30177793 pmcid: 6120863
Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. Hypertension 71(6), https://doi.org/10.1161/HYP.0000000000000065 (2017) https://www.ahajournals.org/doi/10.1161/HYP.0000000000000065 .
Chow, C. K. Prevalence, awareness, treatment, and Control of Hypertension in Rural and Urban Communities in High-, Middle-, and low-income countries. JAMA. 310 (9), 959. https://doi.org/10.1001/jama.2013.184182 (2013). http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.184182
doi: 10.1001/jama.2013.184182 pubmed: 24002282
Nijboer, J. A., Dorlas, J. C. & Lubbers, J. The difference in blood pressure between upper arm and finger during physical exercise. Clin Physiol 8(5), 501–510. https://doi.org/10.1111/j.1475-097X.1988.tb00215.x (1988) https://onlinelibrary.wiley.com/doi/10.1111/j.1475-097X.1988.tb00215.x .
doi: 10.1111/j.1475-097X.1988.tb00215.x pubmed: 3191664
Xuan, Y., Barry, C., Antipa, N. & Wang, E. J. A calibration method for smartphone camera photophlethysmography. Front. Digit. Health. 5  https://doi.org/10.3389/fdgth.2023.1301019 (2023). https://www.frontiersin.org/articles/10.3389/fdgth.2023.1301019
Chandrasekhar, A. et al. Formulas to Explain Popular Oscillometric Blood Pressure Estimation Algorithms. Front Physiol 10, 1415. https://doi.org/10.3389/fphys.2019.01415 (2019) https://www.frontiersin.org/article/10.3389/fphys.2019.01415/full .
doi: 10.3389/fphys.2019.01415 pubmed: 31824333 pmcid: 6881246
Tibshirani, R. Regression shrinkage and selection via the lasso: a retrospective: Regression Shrinkage and Selection via the Lasso,. J Royal Stat Soc 73(3), 273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x (2011) https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.00771.x .
doi: 10.1111/j.1467-9868.2011.00771.x

Auteurs

Colin Barry (C)

Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA. c1barry@ucsd.edu.
Design Lab, UC San Diego, La Jolla, CA, USA. c1barry@ucsd.edu.

Yinan Xuan (Y)

Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA.
Design Lab, UC San Diego, La Jolla, CA, USA.

Ava Fascetti (A)

Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA.
Design Lab, UC San Diego, La Jolla, CA, USA.

Alison Moore (A)

Geriatrics, Gerontology and Palliative Care, UC San Diego Health, La Jolla, CA, USA.

Edward Jay Wang (EJ)

Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA.
Design Lab, UC San Diego, La Jolla, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH