The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for late-reacting tissues.
BED
FLASH effect
LQ model
LQ-L model
hypofractionation
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
revised:
06
07
2022
received:
25
03
2022
accepted:
28
07
2022
pubmed:
7
8
2022
medline:
28
12
2022
entrez:
6
8
2022
Statut:
ppublish
Résumé
Normal tissue (NT) sparing by ultra-high dose rate (UHDR) irradiations compared to conventional dose rate (CONV) irradiations while being isotoxic to the tumor has been termed "FLASH effect" and has been observed when large doses per fraction (d ≳ 5 Gy) have been delivered. Since hypofractionated treatment schedules are known to increase toxicities of late-reacting tissues compared to normofractionated schedules for many clinical scenarios at CONV dose rates, we developed a formalism based on the biologically effective dose (BED) to assess the minimum magnitude of the FLASH effect needed to compensate the loss of late-reacting NT sparing when reducing the number of fractions compared to a normofractionated CONV treatment schedule while remaining isoeffective to the tumor. By requiring the same BED for the tumor, we derived the "break-even NT sparing weighting factor" W For many clinically relevant scenarios, W We developed a formalism that quantifies the minimal NT sparing by the FLASH effect needed to compensate for hypofractionation, based on the LQ and LQ-L models. For a given hypofractionated UHDR treatment scenario and magnitude of the FLASH effect, the formalism predicts if a net NT sparing benefit is expected compared to a respective normofractionated CONV treatment.
Identifiants
pubmed: 35933554
doi: 10.1002/mp.15911
pmc: PMC10087769
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7672-7682Subventions
Organisme : ISREC Foundation thanks to a Biltema donation
Organisme : Fondation pour le soutien de la recherche et du developpement de l'oncologie (FSRDO)
Informations de copyright
© 2022 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Radiother Oncol. 2022 Oct;175:185-190
pubmed: 35537606
Radiat Res. 2020 Dec 1;194(6):618-624
pubmed: 32853385
Sci Transl Med. 2014 Jul 16;6(245):245ra93
pubmed: 25031268
Clin Oncol (R Coll Radiol). 2001;13(2):71-81
pubmed: 11373882
Technol Cancer Res Treat. 2013 Apr;12(2):183-92
pubmed: 23098282
Oncologist. 1996;1(1 & 2):1-7
pubmed: 10387962
Clin Oncol (R Coll Radiol). 2019 Jul;31(7):407-415
pubmed: 31010708
Br J Radiol. 2010 Jul;83(991):554-68
pubmed: 20603408
J Radiosurg SBRT. 2020;7(1):1-4
pubmed: 32802572
Front Oncol. 2019 Oct 14;9:1017
pubmed: 31681570
Clin Cancer Res. 2022 Sep 1;28(17):3814-3823
pubmed: 35421221
Int J Radiat Oncol Biol Phys. 2022 Dec 1;114(5):1032-1044
pubmed: 35810988
Int J Radiat Oncol Biol Phys. 2021 May 1;110(1):21-34
pubmed: 30836165
Radiat Oncol. 2018 May 16;13(1):96
pubmed: 29769103
Clin Cancer Res. 2021 Feb 1;27(3):775-784
pubmed: 33060122
Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1159-60
pubmed: 23517805
Med Phys. 2021 Nov;48(11):7534-7540
pubmed: 34609744
Radiother Oncol. 2019 Oct;139:11-17
pubmed: 31253466
Med Phys. 2008 Sep;35(9):4161-72
pubmed: 18841869
Radiother Oncol. 2012 Nov;105(2):266-8
pubmed: 23157980
Radiother Oncol. 2013 Oct;109(1):13-20
pubmed: 24183066
Semin Radiat Oncol. 2008 Oct;18(4):234-9
pubmed: 18725109
Sci Rep. 2020 Sep 22;10(1):15415
pubmed: 32963332
Phys Med Biol. 2009 Mar 21;54(6):1593-608
pubmed: 19229092
Med Phys. 2022 Dec;49(12):7672-7682
pubmed: 35933554
Phys Med Biol. 2013 Jan 7;58(1):159-67
pubmed: 23221166
Clin Cancer Res. 2019 Jan 1;25(1):35-42
pubmed: 29875213
Med Phys. 2022 Mar;49(3):1993-2013
pubmed: 34426981
Front Oncol. 2020 Feb 25;10:210
pubmed: 32161721