Bioactive compounds, bio-functional properties, and food applications of Garcinia indica: A review.

Garcinia indica CVDs bioactive compounds cancer diabetes neurologic disorders obesity

Journal

Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045

Informations de publication

Date de publication:
10 2022
Historique:
revised: 06 07 2022
received: 22 04 2022
accepted: 09 07 2022
pubmed: 8 8 2022
medline: 13 10 2022
entrez: 7 8 2022
Statut: ppublish

Résumé

Garcinia indica Choisy (kokum), a plant from Clusiaceae family, is an underexplored fruit tree in the Western Ghats region. Kokum has been studied for its health benefits, associated with numerous bioactive compounds, including phenolic acids, flavonoids, citric acids, and others. Among all, garcinol, hydroxycitric acid, and anthocyanins (cyanidin-3-glucoside and cyanidin-3-sambubioside) are major bioactive compounds. G. indica fruit and fruit rinds have been reported to possess numerous therapeutic applications in various health conditions such as cancer, inflammation, diabetes, obesity, cardiovascular disease, and neurologic disorders. In this review, information has been provided on the bioactive compounds present in kokum and their significant health benefits. In vitro and In vivo studies of bioactive components on various diseases have also been reported. The limited information about human studies and G. indica fruit and fruit rinds is also presented. PRACTICAL APPLICATIONS: Bioactive compounds present in Garcinia indica can be utilized for nutraceutical preparations. G. indica can be added to food products to make them functional foods. Extraction of bioactive compounds can be done on an industrial scale. Bioactive compounds can be extracted and used to commercialize lifesaving drugs.

Identifiants

pubmed: 35933691
doi: 10.1111/jfbc.14344
doi:

Substances chimiques

Anthocyanins 0
Plant Extracts 0
Citric Acid 2968PHW8QP

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14344

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Aggarwal, V., Tuli, H. S., Kaur, J., Aggarwal, D., Parashar, G., Chaturvedi Parashar, N., Kulkarni, S., Kaur, G., Sak, K., Kumar, M., & Ahn, K. S. (2020). Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicine, 8(5), 103.
Ahmad, A., Sarkar, S. H., Aboukameel, A., Ali, S., Biersack, B., Seibt, S., Li, Y., Bao, B., Kong, D., Banerjee, S., Schobert, R., Padhye, S. B., & Sarkar, F. H. (2012). Anticancer action of garcinol in vitro and in vivo is in part mediated through inhibition of STAT-3 signaling. Carcinogenesis, 33(12), 2450-2456.
Appelhagen, I., Wulff-Vester, A. K., Wendell, M., Hvoslef-Eide, A. K., Russell, J., Oertel, A., Martens, S., Mock, H. P., Martin, C., & Matros, A. (2018). Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering, 48, 218-232.
Bae, J., Kim, N., Shin, Y., Kim, S. Y., & Kim, Y. J. (2020). Activity of catechins and their applications. Biomedical Dermatology, 4(1), 1-10.
Balasubramanyam, K., Altaf, M., Varier, R. A., Swaminathan, V., Ravindran, A., Sadhale, P. P., & Kundu, T. K. (2004). Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. Journal of Biological Chemistry, 279(32), 33716-33726.
Baliga, M. S., Bhat, H. P., Pai, R. J., Boloor, R., & Palatty, P. L. (2011). The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): A review. Food Research International, 44(7), 1790-1799.
Barve, K. (2019). Garcinol enriched fraction from the fruit rind of Garcinia indica ameliorates atherosclerotic risk factor in diet induced hyperlipidemic C57BL/6 mice. Journal of Traditional and Complementary Medicine, 11(2), 95-102. https://doi.org/10.1016/j.jtcme.2019.11.001
Boo, Y. C. (2019). p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants, 8(8), 275.
Boz, H. (2015). p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. International Journal of Food Science & Technology, 50(11), 2323-2328.
Chate, M. R., Kakade, S. B., & Neeha, V. S. (2019). Kokum (Garcinia indica) fruit: A review. Asian Journal of Dairy and Food Research, 38(4), 329-332.
Chatterjee, A., Bagchi, D., Yasmin, T., & Stohs, S. J. (2005). Antimicrobial effects of antioxidants with and without clarithromycin on Helicobacter pylori. Molecular and Cellular Biochemistry, 270(1), 125-130.
Chatterjee, A., Yasmin, T., Bagchi, D., & Stohs, S. J. (2003). The bactericidal effects of Lactobacillus acidophilus, garcinol and Protykin® compared to clarithromycin, on Helicobacter pylori. Molecular and Cellular Biochemistry, 243(1), 29-35.
Chuah, L. O., Ho, W. Y., Beh, B. K., & Yeap, S. K. (2013). Updates on antiobesity effect of Garcinia origin (-)-HCA. Evidence-Based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/751658
Cooke, D., Schwarz, M., Boocock, D., Winterhalter, P., Steward, W. P., Gescher, A. J., & Marczylo, T. H. (2006). Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis-Relationship with tissue anthocyanin levels. International Journal of Cancer, 119(9), 2213-2220.
D'Amelia, V., Aversano, R., Chiaiese, P., & Carputo, D. (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochemistry Reviews, 17(3), 611-625.
Deore, A., Sapakal, V. D., Dashputre, N. L., & Naikwade, N. S. (2011). Antiulcer activity of Garcinia indica linn fruit rinds. Journal of Applied Pharmaceutical Science., 1, 151-154.
Deshmukh, N. S., Bagchi, M., Yasmin, T., & Bagchi, D. (2008). Safety of a novel calcium/potassium saltof (-)-hydroxycitric acid (HCA-SX): II. Developmental toxicity study in rats. Toxicology Mechanisms and Methods, 18(5), 443-451.
Dhamija, I., Parle, M., & Kumar, S. (2017). Antidepressant and anxiolytic effects of Garcinia indica fruit rind via monoaminergic pathway. 3 Biotech, 7(2), 1-12.
Duan, Y. T., Yang, X. A., Fang, L. Y., Wang, J. H., & Liu, Q. (2018). Anti-proliferative and anti-invasive effects of garcinol from Garcinia indica on gallbladder carcinoma cells. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 73(7), 413-417.
Espíndola, K. M. M., Ferreira, R. G., Narvaez, L. E. M., Silva Rosario, A. C. R., Da Silva, A. H. M., Silva, A. G. B., Vieira, A. P., & Monteiro, M. C. (2019). Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 541. https://doi.org/10.3389/fonc.2019.00541
Fan, D., Alamri, Y., Liu, K., MacAskill, M., Harris, P., Brimble, M., Dalrymple-Alford, J., Prickett, T., Menzies, O., Laurenson, A., & Guan, J. (2018). Supplementation of blackcurrant anthocyanins increased cyclic glycine-proline in the cerebrospinal fluid of parkinson patients: Potential treatment to improve insulin-like growth factor-1 function. Nutrients, 10(6), 714.
Genaro-Mattos, T. C., Maurício, Â. Q., Rettori, D., Alonso, A., & Hermes-Lima, M. (2015). Antioxidant activity of caffeic acid against iron-induced free radical generation-A chemical approach. PLoS One, 10(6), e0129963.
Gupta, A., Singh, A. K., Loka, M., Pandey, A. K., & Bishayee, A. (2021). Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Advances in Protein Chemistry and Structural Biology, 125, 215-257.
Han, J., Li, L., Wang, D., & Ma, H. (2016). (-)-Hydroxycitric acid reduced fat deposition via regulating lipid metabolism-related gene expression in broiler chickens. Lipids in Health and Disease, 15(1), 1-13.
Husson, E., Araya-Farias, M., Desjardins, Y., & Bazinet, L. (2013). Selective anthocyanins enrichment of cranberry juice by electrodialysis with ultrafiltration membranes stacked. Innovative Food Science & Emerging Technologies, 17, 153-162.
Jayakar, V., Lokapur, V., Nityasree, B. R., Chalannavar, R. K., Lasrado, L. D., & Shantaram, M. (2021). Optimization and green synthesis of zinc oxide nanoparticle using Garcinia cambogia leaf and evaluation of their antioxidant and anticancer property in kidney cancer (A498) cell lines. Biomedicine, 41(2), 206-222.
Jena, B. S., Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2002). Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. Journal of Agricultural and Food Chemistry, 50(1), 10-22.
Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, J. (2020). Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. International Journal of Molecular Sciences, 21(22), 8767.
Kakkar, S., & Bais, S. (2014). A review on protocatechuic acid and its pharmacological potential. International Scholarly Research Notices, 2014, 952943. http://dx.doi.org/10.1155/2014/952943
Kalse, S., Sawant, A. A., & Swami, B. S. (2021). Kokum butter: Potential source of in confectionary industry. Journal of Scientific Research and Reports, 27(11), 120-128.
Kaur, R., Chattopadhyay, S. K., Tandon, S., & Sharma, S. (2012). Large scale extraction of the fruits of Garcinia indica for the isolation of new and known polyisoprenylated benzophenone derivatives. Industrial Crops and Products, 37(1), 420-426.
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779.
Kim, S., Seo, S. U., Min, K. J., Woo, S. M., Nam, J. O., Kubatka, P., Kim, S., Park, J. W., & Kwon, T. K. (2018). Garcinol enhances TRAIL-induced apoptotic cell death through up-regulation of DR5 and down-regulation of c-FLIP expression. Molecules, 23(7), 1614.
Kirana, H., & Srinivasan, B. P. (2010). Aqueous extract of Garcinia indica choisy restores glutathione in type 2 diabetic rats. Journal of Young Pharmacists, 2(3), 265-268.
Krishnamurthy, N., Lewis, Y. S., & Ravindranath, B. (1982). Chemical constituents of kokam fruit rind. Journal of Food science and Technology, 19(3), 97-100.
Kumar, S., Sharma, S., & Chattopadhyay, S. K. (2009). High-performance liquid chromatography and LC-ESI-MS method for identification and quantification of two isomeric polyisoprenylated benzophenones isoxanthochymol and camboginol in different extracts of Garcinia species. Biomedical Chromatography, 23(8), 888-907.
Lara, M. V., Bonghi, C., Famiani, F., Vizzotto, G., Walker, R. P., & Drincovich, M. F. (2020). Stone fruit as biofactories of phytochemicals with potential roles in human nutrition and health. Frontiers in Plant Science, 1323. https://doi.org/10.3389/fpls.2020.562252
Lee, P. S., Teng, C. Y., Kalyanam, N., Ho, C. T., & Pan, M. H. (2019). Garcinol reduces obesity in high-fat-diet-fed mice by modulating gut microbiota composition. Molecular Nutrition & Food Research, 63(2), e1800390. https://doi.org/10.1002/mnfr.201800390
Li, L., Jiang, Z., Yao, Y., Yang, Z., & Ma, H. (2020). (-)-Hydroxycitric acid regulates energy metabolism by activation of AMPK-PGC1α-NRF1 signal pathway in primary chicken hepatocytes. Life Sciences, 254, 117785.
Liao, C. H., Sang, S., Ho, C. T., & Lin, J. K. (2005). Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. Journal of Cellular Biochemistry, 96(1), 155-169.
Lim, S. H., Lee, H. S., Lee, C. H., & Choi, C. I. (2021). Pharmacological activity of Garcinia indica (Kokum): An updated review. Pharmaceuticals, 14(12), 1338.
Majeed, M., Majeed, S., Nagabhushanam, K., Lawrence, L., & Mundkur, L. (2020). Garcinia indica extract standardized for 20% Garcinol reduces adipogenesis and high fat diet-induced obesity in mice by alleviating endoplasmic reticulum stress. Journal of Functional Foods, 67, 103863.
Martín-Mex, R., Nexticapan-Garcéz, A., & Larqué-Saavedra, A. (2013). Potential benefits of salicylic acid in food production. In Salicylic acid (pp. 299-313). Springer, Dordrecht.
Mbaveng, A. T., Zhao, Q., & Kuete, V. (2014). Harmful and protective effects of phenolic compounds from African medicinal plants. In Toxicological survey of African medicinal plants (pp. 577-609). Elsevier.
Min, J., Yu, S. W., Baek, S. H., Nair, K. M., Bae, O. N., Bhatt, A., Kassab, M., Nair, M. G., & Majid, A. (2011). Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neuroscience Letters, 500(3), 157-161.
Nayak, C. A., Srinivas, P., & Rastogi, N. K. (2010). Characterisation of anthocyanins from Garcinia indica Choisy. Food Chemistry, 118(3), 719-724.
Negi, P. S., & Jayaprakasha, G. K. (2006). Control of foodborne pathogenic and spoilage bacteria by garcinol and Garcinia indica extracts, and their antioxidant ACTIVITY. Journal of Food Science, 69(3), FMS61-FMS65.
Olivas-Aguirre, F. J., Rodrigo-García, J., Martínez-Ruiz, N. D. R., Cárdenas-Robles, A. I., Mendoza-Díaz, S. O., Álvarez-Parrilla, E., González-Aguilar, G. A., De la Rosa, L. A., Ramos-Jiménez, A., & Wall-Medrano, A. (2016). Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules, 21(9), 1264.
Pacheco, S. M., Soares, M. S. P., Gutierres, J. M., Gerzson, M. F. B., Carvalho, F. B., Azambuja, J. H., Schetinger, M. R. C., Stefanello, F. M., & Spanevello, R. M. (2018). Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer's type. The Journal of Nutritional Biochemistry, 56, 193-204.
Panda, V. S., & Khambat, P. D. (2013). In vivo anti-inflammatory activity of Garcinia indica fruit rind (Kokum) in rats. Biomedicine and Aging Pathology, 2(5), 8-14.
Panda, V. S., & Khambat, P. D. (2014). Antiulcer activity of Garcinia indica fruit rind (kokum berry) in rats. Biomedicine & Aging Pathology, 4(4), 309-316.
Pasha, P. F., & Ramachandran, H. D. (2014). Plant profile, phytochemistry and pharmacology of Garcinia indica: A review. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS), 3(10), 1514-1528.
Patil, B. P., Gawankar, M. S., Sagvekar, V. V., & Jambhale, N. D. (2005, March). Status of existing kokum plantation in Maharashtra. In Proceedings of 2nd national seminar on KOKUM. Goa University.
Patil, S., Shirol, A. M., & Kattimani, K. N. (2009). Variability studies in physico-chemical parameters in kokum (Garcinia indica Choicy) for syrup preparation. Karnataka Journal of Agricultural Sciences, 22(1), 244-245.
Peng, M. L., Han, J., Li, L. L., & Ma, H. T. (2018). Metabolomics reveals the mechanism of (-)-hydroxycitric acid promotion of protein synthesis and inhibition of fatty acid synthesis in broiler chickens. Animal, 12(4), 774-783.
Preuss, H. G., Bagchi, D., Bagchi, M., Rao, C. S., Satyanarayana, S., & Dey, D. K. (2004). Efficacy of a novel, natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX, niacin-bound chromium and Gymnema sylvestre extract in weight management in human volunteers: A pilot study. Nutrition Research, 24(1), 45-58.
Ranveer, R. C., & Sahoo, A. K. (2017). Bioactive constituents of Kokum and its potential health benefits. Nutrition and Food Toxicology, 1(6), 236-244.
Rao, A. R., Venkatswamy, G., & Pendse, D. (1980). Camboginol and cambogin. Tetrahedron Letters, 21(20), 1975-1978.
Rodrigues, J. L., Araújo, R. G., Prather, K. L., Kluskens, L. D., & Rodrigues, L. R. (2015). Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme and Microbial Technology, 71, 36-44.
Rodríguez De Luna, S. L., Ramírez-Garza, R. E., & Serna Saldívar, S. O. (2020). Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal, 2020, 1-38.
Rukachaisirikul, V., Naklue, W., Sukpondma, Y., & Phongpaichit, S. (2005). An antibacterial biphenyl derivative from Garcinia bancana M IQ. Chemical and Pharmaceutical Bulletin, 53(3), 342-343.
Saini, N., Gahlawat, S. K., & Lather, V. (2017). Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent. In Plant biotechnology: Recent advancements and developments (pp. 255-270). Springer Singapore.
Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals, 12(1), 11.
Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., Merghany, R. M., el Mahdy, N. M., Kılıç, C. S., Sytar, O., Sharifi-Rad, M., Sharopov, F., Martins, N., Martorell, M., & Cho, W. C. (2020). Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 5(20), 11849-11872.
Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E. B., Novellino, E., & Martins, N. (2019). The therapeutic potential of apigenin. International Journal of Molecular Sciences, 20(6), 1305.
Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10(1), 118.
Sang, J., Dang, K. K., Ma, Q., Li, B., Huang, Y. Y., & Li, C. Q. (2018). Partition behaviors of different polar anthocyanins in aqueous two-phase systems and extraction of anthocyanins from Nitraria tangutorun Bobr. and Lycium ruthenicum Murr. Food analytical methods, 11(4), 980-991.
Sharma, P., Kaur, H., Kehinde, B. A., Chhikara, N., Sharma, D., & Panghal, A. (2021). Food-derived anticancer peptides: A review. International Journal of Peptide Research and Therapeutics, 27(1), 55-70.
Sheela, K., Nath, K. G., Vijayalakshmi, D., Yankanchi, G. M., & Patil, R. B. (2004). Proximate composition of underutilized green leafy vegetables in Southern Karnataka. Journal of Human Ecology, 15(3), 227-229.
Shukla, S., & Gupta, S. (2010). Apigenin and cancer chemoprevention. In Bioactive foods in promoting health (pp. 663-689). Academic Press.
Singh, P., Roy, T. K., Kanupriya, C., Tripathi, P. C., Kumar, P., & Shivashankara, K. S. (2022). Evaluation of bioactive constituents of Garcinia indica (kokum) as a potential source of hydroxycitric acid, anthocyanin, and phenolic compounds. LWT, 156, 112999.
Sosalagere, C., Kehinde, B. A., & Sharma, P. (2022). Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chemistry, 366, 130494.
Sura, N. K., & Hiremath, L. (2019). Hydroxycitric Acid (Hca)-A potent nutraceuticals. Research Journal of Pharmacy and Technology, 12(7), 3163-3168.
Sutar, R. L., Mane, S. P., & Ghosh, J. S. (2012). Antimicrobial activity of extracts of dried kokum (Garcinia indica C). International Food Research Journal, 19(3), 1207.
Swami, S. B., Thakor, N. J., & Patil, S. C. (2014). Kokum (Garcinia indica) and its many functional components as related to the human health: A review. Journal of food research and technology, 2(4), 130-142.
Tan, J., Li, Y., Hou, D. X., & Wu, S. (2019). The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants, 8(10), 479.
Tomar, M., Rao, R. P., Dorairaj, P., Koshta, A., Suresh, S., Rafiq, M., Kumawat, R., Paramesh, R., V, B., & Venkatesh, K. V. (2019). A clinical and computational study on anti-obesity effects of hydroxycitric acid. RSC Advances, 9(32), 18578-18588.
Tošović, J. (2017). Spectroscopic features of caffeic acid: Theoretical study. Kragujevac Journal of Science, 2017(39), 99-108.
Tripathi, P. C., Senthilkumar, R., Sankar, V., & Karunakaran, G. (2014). Kokum (Garcinia India)-A potential fruits of Western Ghats Bulletin. Central Horticultural Experiment Station Indian Institute of Horticultural Research Chettalli.
Vidhate, G. S., & Singhal, R. S. (2013). Extraction of cocoa butter alternative from kokum (Garcinia indica) kernel by three phase partitioning. Journal of Food Engineering, 117(4), 464-466.
Wang, J., Wang, L., Ho, C. T., Zhang, K., Liu, Q., & Zhao, H. (2017). Garcinol from Garcinia indica downregulates cancer stem-like cell biomarker ALDH1A1 in nonsmall cell lung cancer A549 cells through DDIT3 activation. Journal of Agricultural and Food Chemistry, 65(18), 3675-3683.
Wang, M., Firrman, J., Liu, L., & Yam, K. (2019). A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Research International, 2019, 7010467. https://doi.org/10.1155/2019/7010467
Wroblewski, L. E., Peek, R. M., Jr., & Wilson, K. T. (2010). Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clinical Microbiology Reviews, 23(4), 713-739.
Yamaguchi, F., Saito, M., Ariga, T., Yoshimura, Y., & Nakazawa, H. (2000). Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. Journal of Agricultural and Food Chemistry, 48(6), 2320-2325.
Yang, Q. (2020). Its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020, 8825387.
Zhang, M., Lu, Q., Hou, H., Sun, D., Chen, M., Ning, F., Wu, P., Wei, D., Duan, Y., Pan, Y., & Lash, G. E. (2021). Garcinol inhibits the proliferation of endometrial cancer cells by inducing cell cycle arrest. Oncology Reports, 45(2), 630-640.
Zheng, Y., Guo, C., Zhang, X., Wang, X., & Ma, A. Η. (2020). Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway. Oncology Letters, 20(1), 667-676.
Zhou, X. Y., Cao, J., Han, C. M., Li, S. W., Zhang, C., du, Y. D., Zhou, Q. Q., Zhang, X. Y., & Chen, X. (2017). The C8 side chain is one of the key functional group of Garcinol for its anti-cancer effects. Bioorganic Chemistry, 71, 74-80.
Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279-309.

Auteurs

Sahil Desai (S)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India.

Poorva Sharma (P)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India.

Piyush Kashyap (P)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India.

Bharti Choudhary (B)

Department of Biotechnology, IILM-AHL-CET, Greater Noida, India.

Jasleen Kaur (J)

Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH