Cryptococcus gattii Infection as the Major Clinical Manifestation in Patients with Autoantibodies Against Granulocyte-Macrophage Colony-Stimulating Factor.
Anti-GM-CSF
Anti-cytokine
Autoantibody
Cryptococcus gattii
Pulmonary alveolar proteinosis
Journal
Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
received:
23
02
2022
accepted:
20
07
2022
pubmed:
11
8
2022
medline:
30
11
2022
entrez:
10
8
2022
Statut:
ppublish
Résumé
Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are a predisposing factor for pulmonary alveolar proteinosis (PAP) and Cryptococcus gattii cryptococcosis. This study aimed to investigate clinical manifestations in anti-GM-CSF Ab-positive patients with C. gattii cryptococcosis and analyze the properties of anti-GM-CSF Abs derived from these patients and patients with PAP. Thirty-nine patients diagnosed with cryptococcosis (caused by C. neoformans or C. gattii) and 6 with PAP were enrolled in the present study. Clinical information was obtained from medical records. Blood samples were collected for analysis of autoantibody properties. We also explored the National Health Insurance Research Database (NHIRD) of Taiwan to investigate the epidemiology of cryptococcosis and PAP. High titers of neutralizing anti-GM-CSF Abs were identified in 15 patients with cryptococcosis (15/39, 38.5%). Most anti-GM-CSF Ab-positive cryptococcosis cases had central nervous system (CNS) involvement (14/15, 93.3%). Eleven out of 14 (78.6%) anti-GM-CSF Ab-positive CNS cryptococcosis patients were confirmed to be infected with C. gattii, and PAP did not occur synchronously or metachronously in a single patient from our cohort. Exploration of an association between HLA and anti-GM-CSF Ab positivity or differential properties of autoantibodies from cryptococcosis patients and PAP yielded no significant results. Anti-GM-CSF Abs can cause two diseases, C. gattii cryptococcosis and PAP, which seldom occur in the same subject. Current biological evidence regarding the properties of anti-GM-CSF Abs cannot provide clues regarding decisive mechanisms. Further analysis, including more extensive cohort studies and investigations into detailed properties, is mandatory to better understand the pathogenesis of anti-GM-CSF Abs.
Identifiants
pubmed: 35947322
doi: 10.1007/s10875-022-01341-2
pii: 10.1007/s10875-022-01341-2
doi:
Substances chimiques
Autoantibodies
0
Granulocyte-Macrophage Colony-Stimulating Factor
83869-56-1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1730-1741Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Browne SK. Anticytokine autoantibody-associated immunodeficiency. Annu Rev Immunol. 2014;1(32):635–57.
doi: 10.1146/annurev-immunol-032713-120222
Ku CL, Chi CY, von Bernuth H, Doffinger R. Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum Genet. 2020;139(6–7):783–94.
pubmed: 32419033
pmcid: 7272486
doi: 10.1007/s00439-020-02180-0
Vincent T, Plawecki MM, Goulabchand R, Guilpain P, Eliaou JFF. Emerging clinical phenotypes associated with anti-cytokine autoantibodies. Autoimmun Rev. 2015;14(6):528–35.
pubmed: 25633324
doi: 10.1016/j.autrev.2015.01.015
Shih HP, Ding JY, Yeh CF, Chi CY, Ku CL. Anti-interferon-γ autoantibody-associated immunodeficiency. Curr Opin Immunol. 2021;72:206–14.
pubmed: 34175547
doi: 10.1016/j.coi.2021.05.007
Ben-Dov I, Segel MJ. Autoimmune pulmonary alveolar proteinosis: clinical course and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):513–7.
pubmed: 24424195
doi: 10.1016/j.autrev.2014.01.046
Kitamura T, Tanaka N, Watanabe J, Uchida K, Kanegasaki S, Yamada Y, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med. 1999;190(6):875–80.
pubmed: 10499925
pmcid: 2195627
doi: 10.1084/jem.190.6.875
Hildebrandt J, Yalcin E, Bresser H-G, Cinel G, Gappa M, Haghighi A, et al. Characterization of CSF2RA mutation related juvenile pulmonary alveolar proteinosis. Orphanet J Rare Dis. 2014;9:171.
pubmed: 25425184
pmcid: 4254258
doi: 10.1186/s13023-014-0171-z
Suzuki T, Maranda B, Sakagami T, Catellier P, Couture C-Y, Carey BC, et al. Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Vol. 37, The European respiratory journal. England; 2011. p. 201–4.
Uchida K, Nakata K, Trapnell BC, Terakawa T, Hamano E, Mikami A, et al. High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood. 2004;103(3):1089–98.
pubmed: 14512323
doi: 10.1182/blood-2003-05-1565
Morales-López SE, Garcia-Effron G. Infections due to rare Cryptococcus species. A literature review J Fungi. 2021;7(4):1–20.
Tseng HK, Liu CP, Ho MW, Lu PL, Lo HJ, Lin YH, et al. Microbiological, epidemiological, and clinical characteristics and outcomes of patients with cryptococcosis in Taiwan, 1997–2010. PLoS One. 2013;8(4).
Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, Angkasekwinai N, et al. Anti–GM-CSF autoantibodies in patients with cryptococcal Meningitis. J Immunol. 2013;190(8):3959–66.
pubmed: 23509356
doi: 10.4049/jimmunol.1202526
Saijo T, Chen J, Chen SC-ACA, Rosen LB, Yi J, Sorrell TC, et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio. 2014;5(2):e00912-14.
pubmed: 24643864
pmcid: 3967522
doi: 10.1128/mBio.00912-14
Kuo C-YC-Y, Wang S-YS-Y, Shih H-PH-PH-P, Tu K-HK-H, Huang W-CW-CW-C, Ding J-YJ-Y, et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J Clin Immunol. 2017;37(2):143–52.
pubmed: 28013480
doi: 10.1007/s10875-016-0364-4
Crum-Cianflone NF, Lam PV, Ross-Walker S, Rosen LB, Holland SM. Autoantibodies to granulocyte-macrophage colony-stimulating factor associated with severe and unusual manifestations of Cryptococcus gattii infections. Open Forum Infect Dis. 2017;4(4):1–6.
doi: 10.1093/ofid/ofx211
Applen Clancey S, Ciccone EJ, Coelho MA, Davis J, Ding L, Betancourt R, et al. Cryptococcus deuterogattii vgiia infection associated with travel to the pacific northwest outbreak region in an anti- granulocyte-macrophage colony-stimulating factor autoantibody-positive patient in the united states. MBio. 2019;10(1):e02733-e2818.
pubmed: 30755511
pmcid: 6372798
doi: 10.1128/mBio.02733-18
Kuo PH, Wu UI, Pan YH, Wang JT, Wang YC, Sun HY, et al. Neutralizing anti-GM-CSF autoantibodies in patients with CNS and localized cryptococcosis: a longitudinal follow-up and literature review. Clin Infect Dis. 2021; ciab920.
Yang DH, England MR, Salvator H, Anjum S, Park YD, Marr KA, et al. Cryptococcus gattii species complex as an opportunistic pathogen: underlying medical conditions associated with the infection. MBio. 2021;12(5):e0270821.
pubmed: 34700378
doi: 10.1128/mBio.02708-21
Rosen LB, Rocha Pereira N, Figueiredo C, Fiske LC, Ressner RA, Hong JC, et al. Nocardia-induced granulocyte macrophage colony-stimulating factor is neutralized by autoantibodies in disseminated/extrapulmonary nocardiosis. Clin Infect Dis. 2015;60(7):1017–25.
pubmed: 25472947
doi: 10.1093/cid/ciu968
Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol. 2010;135(2):223–35.
pubmed: 20338813
pmcid: 2866141
doi: 10.1016/j.clim.2010.02.017
Lim WT, Mudalige S, Nilushi T, Shanka J, Parakrama K. Crazy-paving pattern: a rare case of autoimmune pulmonary alveolar proteinosis (PAP) with positive anti-GM-CSF antibody following cryptococcal infection in an otherwise healthy individual and review of literature. Eur J Respir Med. 2021;3(2):200–5.
Peter Donnelly J, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and update of the consensus definitions of invasive fungal disease from the European organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin Infect Dis. 2020;71(6):1367–76.
pubmed: 31802125
doi: 10.1093/cid/ciz1008
Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am. 2016;30(1):179–206.
pubmed: 26897067
pmcid: 5808417
doi: 10.1016/j.idc.2015.10.006
Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, et al. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994;14(7):4335–41.
pubmed: 8007942
pmcid: 358804
Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 1995;14(6):1166–75.
pubmed: 7720707
pmcid: 398194
doi: 10.1002/j.1460-2075.1995.tb07100.x
Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989;140(2):323–34.
pubmed: 2663885
doi: 10.1002/jcp.1041400219
Lin KH, Chen CM, Chen TL, Kuo SC, Kao CC, Jeng YC, et al. Diabetes mellitus is associated with acquisition and increased mortality in HIV-uninfected patients with cryptococcosis: a population-based study. J Infect. 2016;72(5):608–14.
pubmed: 26920792
doi: 10.1016/j.jinf.2016.01.016
Ku CL, Lin CH, Chang SW, Chu CC, Chan JFW, Kong XF, et al. Anti–IFN-γ autoantibodies are strongly associated with HLA-DR*15:02/16:02 and HLA-DQ*05:01/05:02 across Southeast Asia. J Allergy Clin Immunol. 2016;137(3):945-948.e8.
pubmed: 26522403
doi: 10.1016/j.jaci.2015.09.018
Chen PL, Fann CSJ, Chu CC, Chang CC, Chang SW, Hsieh HY, et al. Comprehensive genotyping in two homogeneous Graves’ disease samples reveals major and novel HLA association alleles. PLoS One. 2011;6(1):10–4.
pmcid: 3228704
doi: 10.1371/journal.pone.0016635
Chi CY, Chu CC, Liu JP, Lin CH, Ho MW, Lo WJ, et al. Anti-IFN-gamma autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood. 2013;121(8):1357–66.
pubmed: 23243276
doi: 10.1182/blood-2012-08-452482
Sakaue S, Yamaguchi E, Inoue Y, Takahashi M, Hirata J, Suzuki K, et al. Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis. Nat Commun. 2021;12(1):1032.
pubmed: 33589587
pmcid: 7884840
doi: 10.1038/s41467-021-21011-y
Piccoli L, Campo I, Fregni CS, Rodriguez BMF, Minola A, Sallusto F, et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat Commun. 2015;6:7375.
pubmed: 26077231
doi: 10.1038/ncomms8375
Wormley FL, Perfect JR, Steele C, Cox GM. Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect Immun. 2007;75(3):1453–62.
pubmed: 17210668
pmcid: 1828544
doi: 10.1128/IAI.00274-06
Chen GH, McDonald RA, Wells JC, Huffnagle GB, Lukacs NW, Toews GB. The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect Immun. 2005;73(3):1788–96.
pubmed: 15731080
pmcid: 1064966
doi: 10.1128/IAI.73.3.1788-1796.2005
Chetchotisakd P, Anunnatsiri S, Nithichanon A, Lertmemongkolchai G. Cryptococcosis in anti-interferon-gamma autoantibody-positive patients: a different clinical manifestation from HIV-infected patients. Jpn J Infect Dis. 2017;70(1):69–74.
pubmed: 27169938
doi: 10.7883/yoken.JJID.2015.340
Chi CY, Lin CH, Ho MW, Ding JY, Huang WC, Shih HP, et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-γ autoantibodies and disseminated nontuberculous mycobacterial infections. Medicine (Baltimore). 2016;95(25):e3927.
pubmed: 27336882
doi: 10.1097/MD.0000000000003927
de Souza TL, de SC Fernandes RC, da Silva JA, Alves VG, Coelho AG, Faria ACS, et al. Microbial disease spectrum linked to a novel IL-12Rβ1 N-terminal signal peptide stop-gain homozygous mutation with paradoxical receptor cell-surface expression. Front Microbiol. 2017;8:1–10.
Wipasa J, Chaiwarith R, Chawansuntati K, Praparattanapan J, Rattanathammethee K, Supparatpinyo K. Characterization of anti-interferon-γ antibodies in HIV-negative immunodeficient patients infected with unusual intracellular microorganisms. Exp Biol Med. 2018;243(7):621–6.
doi: 10.1177/1535370218764086
Decken K, Köhler G, Palmer-Lehmann K, Wunderlin A, Mattner F, Magram J, et al. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun. 1998;66(10):4994–5000.
pubmed: 9746609
pmcid: 108620
doi: 10.1128/IAI.66.10.4994-5000.1998
Jirapongsananuruk O, Luangwedchakarn V, Niemela JE, Pacharn P, Visitsunthorn N, Thepthai C, et al. Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pacific J allergy Immunol. 2012;30(1):79–82.
Rezai MS, Khotael G, Kheirkhah M, Hedayat T, Geramishoar M, Mahjoub F. Cryptococcosis and deficiency of interleukin12r. Vol. 27, The Pediatric infectious disease journal. United States; 2008. p. 673.
Amorim A, De Feo D, Friebel E, Ingelfinger F, Anderfuhren CD, Krishnarajah S, et al. IFNγ and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nat Immunol. 2022;23(2):217–28.
pubmed: 35102344
doi: 10.1038/s41590-021-01117-7
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol. 2021;54:101511.
pubmed: 34743926
pmcid: 8671346
doi: 10.1016/j.smim.2021.101511
Muzio L, Viotti A, Martino G. Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Front Neurosci. 2021;15:742065.
pubmed: 34630027
pmcid: 8497816
doi: 10.3389/fnins.2021.742065
Inoue Y, Trapnell BC, Tazawa R, Arai T, Takada T, Hizawa N, et al. Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med. 2008;177(7):752–62.
pubmed: 18202348
pmcid: 2720118
doi: 10.1164/rccm.200708-1271OC
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, et al. Pulmonary alveolar proteinosis. Nat Rev Dis Prim. 2019;5(1).
Uchida K, Nakata K, Suzuki T, Luisetti M, Watanabe M, Koch DE, et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood. 2009;113(11):2547–56.
pubmed: 19282464
pmcid: 2656275
doi: 10.1182/blood-2008-05-155689
Anderson K, Carey B, Martin A, Roark C, Chalk C, Nowell-Bostic M, et al. Pulmonary alveolar proteinosis: an autoimmune disease lacking an HLA association. PLoS One. 2019;14(3):1–12.
doi: 10.1371/journal.pone.0213179