MetaProClust-MS1: an MS1 Profiling Approach for Large-Scale Microbiome Screening.
MS1-only
bioinformatics
clustering
drug screening
machine learning
mass spectrometry
metaproteomics
microbiome
proteomics
unsupervised learning
Journal
mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636
Informations de publication
Date de publication:
30 08 2022
30 08 2022
Historique:
pubmed:
12
8
2022
medline:
12
8
2022
entrez:
11
8
2022
Statut:
ppublish
Résumé
Metaproteomics is used to explore the functional dynamics of microbial communities. However, acquiring metaproteomic data by tandem mass spectrometry (MS/MS) is time-consuming and resource-intensive, and there is a demand for computational methods that can be used to reduce these resource requirements. We present MetaProClust-MS1, a computational framework for microbiome feature screening developed to prioritize samples for follow-up MS/MS. In this proof-of-concept study, we tested and compared MetaProClust-MS1 results on gut microbiome data, from fecal samples, acquired using short 15-min MS1-only chromatographic gradients and MS1 spectra from longer 60-min gradients to MS/MS-acquired data. We found that MetaProClust-MS1 identified robust gut microbiome responses caused by xenobiotics with significantly correlated cluster topologies of comparable data sets. We also used MetaProClust-MS1 to reanalyze data from both a clinical MS/MS diagnostic study of pediatric patients with inflammatory bowel disease and an experiment evaluating the therapeutic effects of a small molecule on the brain tissue of Alzheimer's disease mouse models. MetaProClust-MS1 clusters could distinguish between inflammatory bowel disease diagnoses (ulcerative colitis and Crohn's disease) using samples from mucosal luminal interface samples and identified hippocampal proteome shifts of Alzheimer's disease mouse models after small-molecule treatment. Therefore, we demonstrate that MetaProClust-MS1 can screen both microbiomes and single-species proteomes using only MS1 profiles, and our results suggest that this approach may be generalizable to any proteomics experiment. MetaProClust-MS1 may be especially useful for large-scale metaproteomic screening for the prioritization of samples for further metaproteomic characterization, using MS/MS, for instance, in addition to being a promising novel approach for clinical diagnostic screening.
Identifiants
pubmed: 35950762
doi: 10.1128/msystems.00381-22
pmc: PMC9426440
doi:
Substances chimiques
Proteome
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
e0038122Références
J Am Soc Mass Spectrom. 2013 Mar;24(3):431-43
pubmed: 23400772
Microbiome. 2020 Mar 11;8(1):33
pubmed: 32160905
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nat Methods. 2020 Dec;17(12):1222-1228
pubmed: 33230323
Bioinformatics. 2015 Nov 15;31(22):3718-20
pubmed: 26209431
Biol Mass Spectrom. 1993 Jun;22(6):338-45
pubmed: 8329463
Nat Biotechnol. 2014 Aug;32(8):834-41
pubmed: 24997786
J Am Soc Mass Spectrom. 2020 Jul 1;31(7):1473-1482
pubmed: 32396346
Nature. 2018 Mar 29;555(7698):623-628
pubmed: 29555994
Gut Microbes. 2020 Sep 2;11(5):1348-1361
pubmed: 32372706
Nat Med. 2021 Nov;27(11):1885-1892
pubmed: 34789871
Biochem Biophys Res Commun. 1993 Aug 31;195(1):58-64
pubmed: 8363627
J Stat Softw. 2010;33(1):1-22
pubmed: 20808728
Nat Biotechnol. 2012 Oct;30(10):918-20
pubmed: 23051804
mSystems. 2019 May 21;4(3):
pubmed: 31117019
Nucleic Acids Res. 2017 Jan 4;45(D1):D1100-D1106
pubmed: 27924013
Nat Commun. 2016 Jun 28;7:12015
pubmed: 27352007
Nat Commun. 2018 Mar 15;9(1):1090
pubmed: 29545622
Nat Commun. 2019 Dec 4;10(1):5536
pubmed: 31797920
Proteomes. 2019 Jan 08;7(1):
pubmed: 30626002
J Proteome Res. 2019 Jun 7;18(6):2370-2380
pubmed: 31009573
Anal Biochem. 1993 Nov 1;214(2):397-408
pubmed: 8109726
Nat Methods. 2016 Aug 30;13(9):741-8
pubmed: 27575624
BMC Syst Biol. 2007 Nov 21;1:54
pubmed: 18031580
Cell Rep. 2014 Nov 20;9(4):1235-45
pubmed: 25456126
Circ Res. 2017 Mar 31;120(7):1183-1196
pubmed: 28360349
BMC Bioinformatics. 2011 Mar 17;12:77
pubmed: 21414208
Bioinformatics. 2016 Jul 1;32(13):2035-7
pubmed: 27153682
Ann Appl Stat. 2018 Dec;12(4):2075-2095
pubmed: 30473739
Comput Struct Biotechnol J. 2020 Nov 28;18:3833-3842
pubmed: 33335682
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
Microbiome. 2016 Sep 27;4(1):51
pubmed: 27671352
Curr Biol. 1993 Jun 1;3(6):327-32
pubmed: 15335725
J Proteome Res. 2017 Nov 3;16(11):3989-3999
pubmed: 28905631
Bioinformatics. 2006 Jun 15;22(12):1540-2
pubmed: 16595560
Genome Biol. 2012 Apr 16;13(9):R79
pubmed: 23013615
Anal Chem. 2017 Sep 5;89(17):9407-9415
pubmed: 28749657
Nat Commun. 2018 Jul 20;9(1):2873
pubmed: 30030445
Nature. 2016 Jul 06;535(7610):56-64
pubmed: 27383980
J Proteome Res. 2019 Sep 6;18(9):3383-3393
pubmed: 31334659
mSystems. 2016 Apr 26;1(2):
pubmed: 27822523
Sci Transl Med. 2015 Sep 30;7(307):307ra152
pubmed: 26424567
Anal Chem. 2020 Mar 17;92(6):4326-4333
pubmed: 32077687
Nature. 2013 Jan 3;493(7430):45-50
pubmed: 23222524