Complexity of Running and Its Relationship with Joint Kinematics during a Prolonged Run.
complexity
detrended fluctuation analysis
elite runners
variability
Journal
International journal of environmental research and public health
ISSN: 1660-4601
Titre abrégé: Int J Environ Res Public Health
Pays: Switzerland
ID NLM: 101238455
Informations de publication
Date de publication:
05 08 2022
05 08 2022
Historique:
received:
14
06
2022
revised:
30
07
2022
accepted:
03
08
2022
entrez:
12
8
2022
pubmed:
13
8
2022
medline:
16
8
2022
Statut:
epublish
Résumé
We investigated the effect of prolonged running on joint kinematics and its association with stride complexity between novice and elite runners. Ten elite marathoners and eleven healthy individuals took part in a 20 min submaximal prolonged running experiment at their preferred running speed (PRS). A three-dimensional motion capture system was utilized to capture and calculate the alpha exponent, stride-to-stride fluctuations (SSFs), and stride-to-stride variability (SSV) of spatiotemporal parameters and joint kinematics. In the results, the elite athletes ran at a considerably higher PRS than the novice runners, yet no significant differences were found in respiratory exchange ratio with increasing time intervals. For the spatiotemporal parameters, we observed a significant increase in the step width and length variability in novice runners with increasing time-interval (p < 0.05). However, we did not observe any differences in the alpha exponent of spatiotemporal parameters. Significant differences in SSF of joint kinematics were observed, particularly in the sagittal plane for ankle, knee, and hip at heel strike (p < 0.05). While in mid-stance, time-interval differences were observed in novices who ran with a lower knee flexion angle (p < 0.05). During toe-off, significantly higher SSV was observed, particularly in the hip and ankle for novices (p < 0.05). The correlation analysis of joint SSV revealed a distinct negative relationship with the alpha exponent of step-length and step-width for elite runners, while, for novices, a positive relation was observed only for the alpha exponent of step-width. In conclusion, our study shows that increased step-width variability seen in novices could be a compensatory mechanism to maintain performance and mitigate the loss of stability. On the other hand, elite runners showed a training-induced effective modulation of lower-limb kinematics to improve their running performance.
Identifiants
pubmed: 35955013
pii: ijerph19159656
doi: 10.3390/ijerph19159656
pmc: PMC9368290
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
J Biomech. 2000 Mar;33(3):269-78
pubmed: 10673110
Med Sci Sports Exerc. 2015 Mar;47(3):625-30
pubmed: 25003780
Gait Posture. 2020 Feb;76:403-408
pubmed: 31935615
Hum Mov Sci. 2013 Feb;32(1):171-80
pubmed: 23465724
Gait Posture. 2006 Aug;24(1):120-5
pubmed: 16182530
Gait Posture. 2008 May;27(4):710-4
pubmed: 17723303
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9
pubmed: 9961383
Gait Posture. 2018 Jul;64:7-11
pubmed: 29803083
Ergonomics. 1994 Jan;37(1):197-206
pubmed: 8112276
Int J Sports Physiol Perform. 2018 May 29;:1-22
pubmed: 29809077
J Biomech. 2012 Feb 23;45(4):666-71
pubmed: 22227316
Phys Med Rehabil Clin N Am. 2005 Aug;16(3):603-21
pubmed: 16005396
Gait Posture. 2010 Jul;32(3):348-53
pubmed: 20605097
J Biomech. 1995 Oct;28(10):1257-61
pubmed: 8550644
J Exp Biol. 2006 Jun;209(Pt 11):2143-55
pubmed: 16709916
Hum Mov Sci. 2007 Feb;26(1):87-102
pubmed: 17161484
Sports Med. 2011 Aug 1;41(8):641-71
pubmed: 21780850
J R Soc Interface. 2013 Mar 20;10(83):20120999
pubmed: 23516062
Sports Med. 2016 Jun;46(6):793-807
pubmed: 26816209
J Sports Sci. 2019 May;37(9):1021-1028
pubmed: 30394180
Phys Ther Sport. 2011 Nov;12(4):151-63
pubmed: 22085708
Hum Mov Sci. 2007 Aug;26(4):555-89
pubmed: 17618701
Clin Biomech (Bristol, Avon). 1999 Jun;14(5):297-308
pubmed: 10521606
Sports Biomech. 2022 Sep;21(8):966-980
pubmed: 32129719
Med Sci Sports Exerc. 2002 Jan;34(1):166-73
pubmed: 11782663
Eur J Appl Physiol. 2019 Feb;119(2):429-439
pubmed: 30470873
Eur J Sport Sci. 2014;14(3):251-8
pubmed: 23581294
J Hum Kinet. 2019 Nov 30;70:25-38
pubmed: 31915473
Gait Posture. 2011 Jan;33(1):36-40
pubmed: 21036046
Gait Posture. 2010 Mar;31(3):331-5
pubmed: 20056419
J R Soc Interface. 2011 Dec 7;8(65):1682-98
pubmed: 21880615
PLoS One. 2013 Sep 23;8(9):e73239
pubmed: 24086274
J Appl Physiol (1985). 1996 May;80(5):1448-57
pubmed: 8727526
J Exp Biol. 2004 Nov;207(Pt 23):4165-74
pubmed: 15498962
Gait Posture. 2014 Jan;39(1):124-8
pubmed: 23831430
J Sports Sci Med. 2005 Mar 01;4(1):29-36
pubmed: 24431958
Int J Sports Med. 2014 Oct;35(11):933-8
pubmed: 24886929
Sports Biomech. 2018 Sep;17(3):350-360
pubmed: 28730917
Gait Posture. 2016 Feb;44:137-42
pubmed: 27004647
Front Physiol. 2017 Feb 27;8:102
pubmed: 28289392
Gait Posture. 2019 Feb;68:155-160
pubmed: 30481697
Clin Med Circ Respirat Pulm Med. 2008 Feb 01;2:1-9
pubmed: 21157516
Int J Exerc Sci. 2011 Apr 15;4(2):133-140
pubmed: 27182360
J Sports Sci. 2018 Feb;36(3):272-278
pubmed: 28303754
Behav Res Methods. 2007 May;39(2):175-91
pubmed: 17695343
Front Physiol. 2012 Jun 04;3:141
pubmed: 22675302
Sports Med. 2010 Feb 1;40(2):95-111
pubmed: 20092364
J Biomech. 2006;39(3):444-52
pubmed: 16389084
Nature. 2006 Jan 5;439(7072):72-5
pubmed: 16155564
Int J Exerc Sci. 2017 May 01;10(3):446-453
pubmed: 28515840
J Biomech. 2002 Nov;35(11):1459-74
pubmed: 12413965
Gait Posture. 2009 Aug;30(2):173-80
pubmed: 19473844
Sports Med. 2008;38(3):239-52
pubmed: 18278984
Big Data. 2018 Dec;6(4):248-261
pubmed: 30421990
PLoS One. 2015 Mar 23;10(3):e0119596
pubmed: 25798610
Sports Med Arthrosc Rehabil Ther Technol. 2012 Nov 27;4(1):45
pubmed: 23186012
J Appl Physiol (1985). 2012 Feb;112(3):427-34
pubmed: 22052870