Acrylamide; a neurotoxin in popcorns: a systematic review and meta-analysis.
acrylamide
meta-analysis
meta-regression
popcorn
systematic review
Journal
Reviews on environmental health
ISSN: 2191-0308
Titre abrégé: Rev Environ Health
Pays: Germany
ID NLM: 0425754
Informations de publication
Date de publication:
15 Dec 2023
15 Dec 2023
Historique:
received:
19
06
2022
accepted:
15
07
2022
medline:
27
11
2023
pubmed:
13
8
2022
entrez:
12
8
2022
Statut:
epublish
Résumé
Acrylamide is a known neurotoxic compound for humans. Foods that have high concentrations of acrylamide need to be identified. One of the food products containing acrylamide is popcorn. Popcorn is an important source of snacks for children, especially students. The presented study is a systematic review and meta-analysis of the level of acrylamide in popcorn. The search was done in different databases with the keywords; acrylamide, popcorn, popped corn. 27 articles were found by searching various databases. After initial screening and full text evaluation, 8 articles were selected for systematic review and 6 articles for meta-analysis. The amount of acrylamide in this product was in the range of 1,017.7-106 μg/kg. Microwaved corn contains lower amounts of acrylamide than other methods of preparation. The type of popcorn also had an effect on the amount of acrylamide with Meta-regression. It was found that sweet popcorn contains higher amounts of acrylamide. The overall value of acrylamide concentration in popcorns was calculated to be 459.6 ± 220.3 μg/kg. This amount is high and requires measures to reduce the amount of acrylamide.
Identifiants
pubmed: 35960600
pii: reveh-2022-0085
doi: 10.1515/reveh-2022-0085
doi:
Substances chimiques
Neurotoxins
0
Acrylamide
20R035KLCI
Types de publication
Meta-Analysis
Systematic Review
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
647-653Informations de copyright
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
Références
Champrasert, O, Orfila, C, Suwannaporn, P. Acrylamide mitigation using zein–polysaccharide complex particles. Food Hydrocoll 2022;124:107317. https://doi.org/10.1016/j.foodhyd.2021.107317 .
doi: 10.1016/j.foodhyd.2021.107317
Zhu, Y, Luo, Y, Sun, G, Wang, P, Hu, X, Chen, F. The simultaneous inhibition of histidine on 5-hydroxymethylfurfural and acrylamide in model systems and cookies. Food Chem 2022;370:131271. https://doi.org/10.1016/j.foodchem.2021.131271 .
doi: 10.1016/j.foodchem.2021.131271
Duedahl-Olesen, L, Wilde, AS, Dagnæs-Hansen, MP, Mikkelsen, A, Olesen, PT, Granby, K. Acrylamide in commercial table olives and the effect of domestic cooking. Food Control 2022;132:108515. https://doi.org/10.1016/j.foodcont.2021.108515 .
doi: 10.1016/j.foodcont.2021.108515
Zhuang, Y-T, Ma, L, Huang, H, Han, L, Wang, L, Zhang, Y. A portable kit based on thiol-ene Michael addition for acrylamide detection in thermally processed foods. Food Chem 2022;373:131465. https://doi.org/10.1016/j.foodchem.2021.131465 .
doi: 10.1016/j.foodchem.2021.131465
Huang, Y, Lu, J, Li, M, Li, C, Wang, Y, Shen, M, et al.. Effect of acidity regulators on acrylamide and 5-hydroxymethylfurfural formation in French fries: the dual role of pH and acid radical ion. Food Chem 2022;371:131154. https://doi.org/10.1016/j.foodchem.2021.131154 .
doi: 10.1016/j.foodchem.2021.131154
Liao, K-W, Chang, F-C, Chang, C-H, Huang, Y-F, Pan, W-H, Chen, M-L. Associating acrylamide internal exposure with dietary pattern and health risk in the general population of Taiwan. Food Chem 2022;374:131653. https://doi.org/10.1016/j.foodchem.2021.131653 .
doi: 10.1016/j.foodchem.2021.131653
Virk-Baker, MK, Nagy, TR, Barnes, S, Groopman, J. Dietary acrylamide and human cancer: a systematic review of literature. Nutr Cancer 2014;66:774–90. https://doi.org/10.1080/01635581.2014.916323 .
doi: 10.1080/01635581.2014.916323
Kumar, J, Das, S, Teoh, SL. Dietary acrylamide and the risks of developing cancer: facts to ponder. Front Nutr 2018;5:14. https://doi.org/10.3389/fnut.2018.00014 .
doi: 10.3389/fnut.2018.00014
Letona, P, Chacon, V, Roberto, C, Barnoya, J. A qualitative study of children’s snack food packaging perceptions and preferences. BMC Publ Health 2014;14:1274. https://doi.org/10.1186/1471-2458-14-1274 .
doi: 10.1186/1471-2458-14-1274
Damen, FWM, Luning, PA, Pellegrini, N, Vitaglione, P, Hofstede, GJ, Fogliano, V, et al.. Mothers’ considerations in snack choice for their children: differences between the north and the south of Italy. Food Qual Prefer 2020;85: 103965. https://doi.org/10.1016/j.foodqual.2020.103965 .
doi: 10.1016/j.foodqual.2020.103965
Lavriša, Ž, Pravst, I. Marketing of foods to children through food packaging is almost exclusively linked to unhealthy foods. Nutrients 2019;11:1128. https://doi.org/10.3390/nu11051128 .
doi: 10.3390/nu11051128
Nguyen, V, Cooper, L, Lowndes, J, Melanson, K, Angelopoulos, TJ, Rippe, JM, et al.. Popcorn is more satiating than potato chips in normal-weight adults. Nutr J 2012;11:71. https://doi.org/10.1186/1475-2891-11-71 .
doi: 10.1186/1475-2891-11-71
Kim, H-K, Nanba, T, Ozaki, M, Chijiki, H, Takahashi, M, Fukazawa, M, et al.. Effect of the intake of a snack containing dietary fiber on postprandial glucose levels. Foods 2020;9:1500. https://doi.org/10.3390/foods9101500 .
doi: 10.3390/foods9101500
Lindeman, B, Johansson, Y, Andreassen, M, Husøy, T, Dirven, H, Hofer, T, et al.. Does the food processing contaminant acrylamide cause developmental neurotoxicity? a review and identification of knowledge gaps. Reprod Toxicol 2021;101:93–114. https://doi.org/10.1016/j.reprotox.2021.02.006 .
doi: 10.1016/j.reprotox.2021.02.006
Farouk, SM, Gad, FA, Almeer, R, Abdel-Daim, MM, Emam, MA. Exploring the possible neuroprotective and antioxidant potency of lycopene against acrylamide-induced neurotoxicity in rats’ brain. Biomed Pharmacother 2021;138: 111458. https://doi.org/10.1016/j.biopha.2021.111458 .
doi: 10.1016/j.biopha.2021.111458
Dasari, S, Ganjayi, MS, Meriga, B. Glutathione S-transferase is a good biomarker in acrylamide induced neurotoxicity and genotoxicity. Interdiscipl Toxicol 2018;11:115–21. https://doi.org/10.2478/intox-2018-0007 .
doi: 10.2478/intox-2018-0007
Faria, M, Ziv, T, Gómez-Canela, C, Ben-Lulu, S, Prats, E, Novoa-Luna, KA, et al.. Acrylamide acute neurotoxicity in adult zebrafish. Sci Rep 2018;8:7918. https://doi.org/10.1038/s41598-018-26343-2 .
doi: 10.1038/s41598-018-26343-2
Ghasemzadeh Rahbardar, M, Cheraghi Farmad, H, Hosseinzadeh, H, Mehri, S. Protective effects of selenium on acrylamide-induced neurotoxicity and hepatotoxicity in rats. Iran J Basic Med Sci 2021;24:1041–9.
Guo, J, Cao, X, Hu, X, Li, S, Wang, J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 2020;21:62. https://doi.org/10.1186/s40360-020-00440-3 .
doi: 10.1186/s40360-020-00440-3
Kopanska, M, Muchacka, R, Czech, J, Batoryna, M, Formicki, G. Acrylamide toxicity and cholinergic nervous system. J Physiol Pharmacol 2018;69:847–58.
El Tawila, MM, Al-Ansari, AM, Alrasheedi, AA, Neamatallah, AA. Dietary exposure to acrylamide from cafeteria foods in Jeddah schools and associated risk assessment. J Sci Food Agric 2017;97:4494–500. https://doi.org/10.1002/jsfa.8314 .
doi: 10.1002/jsfa.8314
Luo, Y-S, Chiang, S-Y, Long, T-Y, Tsai, T-H, Wu, K-Y. Simultaneous toxicokinetics characterization of acrylamide and its primary metabolites using a novel microdialysis isotope-dilution liquid chromatography mass spectrometry method. Environ Int 2022;158:106954. https://doi.org/10.1016/j.envint.2021.106954 .
doi: 10.1016/j.envint.2021.106954
Sun, SY, Fang, Y, Xia, YM. A facile detection of acrylamide in starchy food by using a solid extraction-GC strategy. Food Control 2012;26:220–2. https://doi.org/10.1016/j.foodcont.2012.01.028 .
doi: 10.1016/j.foodcont.2012.01.028
Bocharova, O, Reshta, S, Bocharova, M. Investigation of the chemical safety of microwaved popcorn in respect of acrylamide formation. Int Food Res J 2017;24:2274–7.
Bušová, M, Bencko, V, Kromerová, K, Nadjo, I, Babjaková, J. Occurrence of acrylamide in selected food products. Cent Eur J Publ Health 2020;28:320–4. https://doi.org/10.21101/cejph.a6430 .
doi: 10.21101/cejph.a6430
Sun, S-y, Fang, Y, Xia, Y-m. A facile detection of acrylamide in starchy food by using a solid extraction-GC strategy. Food Control 2012;26:220–2. https://doi.org/10.1016/j.foodcont.2012.01.028 .
doi: 10.1016/j.foodcont.2012.01.028
Shaviklo, AR, Dehkordi, AK, Zangeneh, P. Ingredient optimization and children’s liking of popcorn seasoned with fish protein powder/Omega-3 Fish Oil. J Int Food & Agribus Mark 2015;27:79–90. https://doi.org/10.1080/08974438.2014.897664 .
doi: 10.1080/08974438.2014.897664
Matthys, C, Bilau, M, Govaert, Y, Moons, E, De Henauw, S, Willems, J. Risk assessment of dietary acrylamide intake in Flemish adolescents. Food Chem Toxicol 2005;43:271–8. https://doi.org/10.1016/j.fct.2004.10.003 .
doi: 10.1016/j.fct.2004.10.003
Svensson, K, Abramsson, L, Becker, W, Glynn, A, Hellenäs, K-E, Lind, Y, et al.. Dietary intake of acrylamide in Sweden. Food Chem Toxicol 2003;41:1581–6. https://doi.org/10.1016/s0278-6915(03)00188-1 .
doi: 10.1016/s0278-6915(03)00188-1
Granvogl, M, Schieberle, P. Quantification of 3-aminopropionamide in cocoa, coffee and cereal products : CCCorrelation with acrylamide concentrations determined by an improved clean-up method for complex matrices. Eur Food Res Tech 2007;225:857–63. https://doi.org/10.1007/s00217-006-0492-9 .
doi: 10.1007/s00217-006-0492-9
Kamankesh, M, Nematollahi, A, Mohammadi, A, Ferdowsi, R. Investigation of composition, temperature, and heating time in the formation of acrylamide in snack: central composite design optimization and microextraction coupled with gas chromatography-mass spectrometry. Food Anal Methods 2021;14:44–53. https://doi.org/10.1007/s12161-020-01849-6 .
doi: 10.1007/s12161-020-01849-6
Murkovic, M. Acrylamide in Austrian foods. J Biochem Biophys Methods 2004;61:161–7. https://doi.org/10.1016/j.jbbm.2004.02.006 .
doi: 10.1016/j.jbbm.2004.02.006
Roach, JA, Andrzejewski, D, Gay, ML, Nortrup, D, Musser, SM. Rugged LC-MS/MS survey analysis for acrylamide in foods. J Agric Food Chem 2003;51:7547–54. https://doi.org/10.1021/jf0346354 .
doi: 10.1021/jf0346354
Choi, SY, Ko, A, Kang, H-S, Hwang, M-S, Lee, H-S. Association of urinary acrylamide concentration with lifestyle and demographic factors in a population of South Korean children and adolescents. Environ Sci Pollut Res 2019;26:18247–55. https://doi.org/10.1007/s11356-019-05037-w .
doi: 10.1007/s11356-019-05037-w
Eerola, S, Hollebekkers, K, Hallikainen, A, Peltonen, K. Acrylamide levels in Finnish foodstuffs analysed with liquid chromatography tandem mass spectrometry. Mol Nutr Food Res 2007;51:239. https://doi.org/10.1002/mnfr.200600167 .
doi: 10.1002/mnfr.200600167
Cieślik, I, Cieslik, E, Topolska, K, Surma, M. Dietary acrylamide exposure from traditional food products in Lesser Poland and associated risk assessment. Ann Agric Environ Med 2020;27:225–30. https://doi.org/10.26444/aaem/109063 .
doi: 10.26444/aaem/109063
Zilić, S, Nikolić, V, Mogol, BA, Hamzalıoglu, Al, Tas, NG, Kocadaglı, T, et al.. Acrylamide in corn-based thermally processed foods: a review. J Agric Food Chem 2022;70:4165–81. https://doi.org/10.1021/acs.jafc.1c07249 .
doi: 10.1021/acs.jafc.1c07249
Bušová, M, Bencko, V, Kromerová, K, Nadjo, I, Babjaková, J. Occurrence of acrylamide in selected food products. Cent Eur J Publ Health 2020;28:320–4. https://doi.org/10.21101/cejph.a6430 .
doi: 10.21101/cejph.a6430
Zhao, L, Zhou, T, Yan, F, Zhu, X, Lu, Q, Liu, R. Synergistic inhibitory effects of procyanidin B(2) and catechin on acrylamide in food matrix. Food Chem 2019;296:94–9. https://doi.org/10.1016/j.foodchem.2019.05.102 .
doi: 10.1016/j.foodchem.2019.05.102
Ahmadi, BA-AA, Jahedkhanki, G, Nodehi, RN, Sadighara, P. The comparative amount of acrylamide in tahdig prepared with the most common edible liquid and solid oils. Curr Nutr Food Sci 2019;15:1–5.
Liu, H, Roasa, J, Mats, L, Zhu, H, Shao, S. Effect of acid on glycoalkaloids and acrylamide in French fries. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020;37:938–45. https://doi.org/10.1080/19440049.2020.1743883 .
doi: 10.1080/19440049.2020.1743883
Yang, H, Li, L, Yin, Y, Li, B, Zhang, X, Jiao, W, et al.. Effect of ground ginger on dough and biscuit characteristics and acrylamide content. Food Sci Biotechnol 2019;28:1359–66. https://doi.org/10.1007/s10068-019-00592-x .
doi: 10.1007/s10068-019-00592-x
Perera, DN, Hewavitharana, GG, Navaratne, S. Comprehensive study on the acrylamide content of high thermally processed foods. BioMed Res Int 2021;2021:2021.
Rifai, L, Saleh, FA. A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. Int J Toxicol 2020;39:93–102. https://doi.org/10.1177/1091581820902405 .
doi: 10.1177/1091581820902405
Pedreschi, F, Mariotti, MS, Granby, K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric 2014;94:9–20. https://doi.org/10.1002/jsfa.6349 .
doi: 10.1002/jsfa.6349
Pruser, KN, Flynn, NE. Acrylamide in health and disease. Front Biosci (Schol Ed) 2011;3:41–51. https://doi.org/10.2741/s130 .
doi: 10.2741/s130
Bachir, N, Haddarah, A, Sepulcre, F, Pujola, M. Formation, mitigation, and detection of acrylamide in foods. Food Anal Methods 2022;15:1736–47. https://doi.org/10.1007/s12161-022-02239-w .
doi: 10.1007/s12161-022-02239-w
Hu, Q, Xu, X, Fu, Y, Li, Y. Rapid methods for detecting acrylamide in thermally processed foods: a review. Food Control 2015;56:135–46. https://doi.org/10.1016/j.foodcont.2015.03.021 .
doi: 10.1016/j.foodcont.2015.03.021
Skinner, MM, Seale, JT, Cantrell, MS, Collins, JM, Turner, MW, McDougal, OM. Instrumentation for routine analysis of acrylamide in French fries: assessing limitations for adoption. Foods 2021;10:1–16. https://doi.org/10.3390/foods10092038 .
doi: 10.3390/foods10092038