Small molecule photocatalysis enables drug target identification via energy transfer.
photocatalysis
proteomics
target identification
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
23 08 2022
23 08 2022
Historique:
entrez:
15
8
2022
pubmed:
16
8
2022
medline:
18
8
2022
Statut:
ppublish
Résumé
Over half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y. Consigned to outdated stoichiometric activation modes, modern target ID campaigns are regularly confounded by poor signal-to-noise resulting from limited receptor occupancy and low crosslinking yields, especially when targeting low abundance membrane proteins or multiple protein target engagement. Here, we describe a broadly general platform for photocatalytic small molecule target ID, which is founded upon the catalytic amplification of target-tag crosslinking through the continuous generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. By decoupling the reactive warhead tag from the small molecule ligand, catalytic signal amplification results in unprecedented levels of target enrichment, enabling the quantitative target and off target ID of several drugs including (+)-JQ1, paclitaxel (Taxol), dasatinib (Sprycel), as well as two G-protein-coupled receptors-ADORA2A and GPR40.
Identifiants
pubmed: 35969791
doi: 10.1073/pnas.2208077119
pmc: PMC9407219
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2208077119Références
Nat Commun. 2016 Oct 11;7:13042
pubmed: 27727204
Science. 2004 Jul 16;305(5682):399-401
pubmed: 15256671
Nat Rev Cancer. 2002 Jan;2(1):48-58
pubmed: 11902585
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11294-11299
pubmed: 27651486
Org Biomol Chem. 2018 Aug 29;16(34):6168-6179
pubmed: 30128443
Chem Biol. 2012 Jan 27;19(1):72-84
pubmed: 22284356
ACS Chem Biol. 2021 Feb 19;16(2):404-413
pubmed: 33543920
Oncol Rep. 2014 Aug;32(2):677-83
pubmed: 24891117
Nat Rev Drug Discov. 2013 Aug;12(8):569
pubmed: 23903212
Angew Chem Int Ed Engl. 2013 Mar 4;52(10):2744-92
pubmed: 23418026
Curr Opin Chem Biol. 2009 Dec;13(5-6):539-48
pubmed: 19825513
Cell Chem Biol. 2016 Apr 21;23(4):435-41
pubmed: 27049669
J Med Chem. 2018 Oct 11;61(19):8504-8535
pubmed: 29718665
ACS Chem Biol. 2016 Jan 15;11(1):44-52
pubmed: 26502221
Science. 2020 Mar 6;367(6482):1091-1097
pubmed: 32139536
Cancer Res. 2014 Dec 15;74(24):7239-49
pubmed: 25341542
Nat Chem Biol. 2016 Oct;12(10):822-30
pubmed: 27526031
Nat Biotechnol. 2004 Oct;22(10):1253-9
pubmed: 15470465
ACS Med Chem Lett. 2017 May 17;8(6):660-665
pubmed: 28626529
J Am Chem Soc. 2012 Feb 15;134(6):3001-14
pubmed: 22242683
RSC Adv. 2018 Aug 20;8(51):29428-29454
pubmed: 35547988
Drug Discov Today. 2005 Apr 1;10(7):513-9
pubmed: 15809197
Mol Pharmacol. 2018 Apr;93(4):251-258
pubmed: 29298813
Angew Chem Int Ed Engl. 2013 Aug 12;52(33):8681-4
pubmed: 23824878
ACS Chem Biol. 2016 May 20;11(5):1245-54
pubmed: 26863403
Proteome Sci. 2017 Jun 24;15:14
pubmed: 28652856
Nat Commun. 2020 Nov 13;11(1):5783
pubmed: 33188197
Leuk Lymphoma. 2009 Dec;50(12):2017-29
pubmed: 19672773
Future Med Chem. 2015;7(2):159-83
pubmed: 25686004
Cell Chem Biol. 2018 Feb 15;25(2):206-214.e11
pubmed: 29174542
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13283-8
pubmed: 17684099
Br J Cancer. 2021 Apr;124(9):1478-1490
pubmed: 33723398
Nat Rev Drug Discov. 2018 Mar;17(3):167-181
pubmed: 29348681
J Am Chem Soc. 2012 Mar 7;134(9):3961-4
pubmed: 22352855
J Pharmacol Exp Ther. 1996 Feb;276(2):398-404
pubmed: 8632302
Curr Pharm Des. 2008;14(15):1512-24
pubmed: 18537674
Nat Biotechnol. 2008 Jan;26(1):127-32
pubmed: 18183025
J Med Chem. 2018 Sep 13;61(17):7892-7901
pubmed: 30080404
Nature. 2010 Dec 23;468(7327):1067-73
pubmed: 20871596
Biomolecules. 2019 Oct 31;9(11):
pubmed: 31683643
Nat Chem Biol. 2013 Apr;9(4):232-40
pubmed: 23508189
J Proteomics. 2010 Mar 10;73(5):868-78
pubmed: 20096812
Nat Prod Rep. 2016 May 4;33(5):681-708
pubmed: 27098809
J Am Chem Soc. 2016 Nov 9;138(44):14609-14615
pubmed: 27740749
Nat Chem Biol. 2013 Apr;9(4):200-5
pubmed: 23508173
J Biol Chem. 2009 Jan 2;284(1):284-291
pubmed: 18984583
Bioorg Med Chem Lett. 2014 Jul 15;24(14):2991-3000
pubmed: 24881568
Science. 2017 Jun 30;356(6345):1397-1401
pubmed: 28619718
J Med Chem. 2018 Aug 23;61(16):6945-6963
pubmed: 29683660
Cancer. 2000 Jun 1;88(11):2619-28
pubmed: 10861441
Signal Transduct Target Ther. 2020 May 21;5(1):72
pubmed: 32435053
J Am Chem Soc. 2014 Jul 16;136(28):9990-8
pubmed: 24972113
Int J Oncol. 2018 Dec;53(6):2503-2517
pubmed: 30272279
Science. 2010 Mar 12;327(5971):1345-50
pubmed: 20223979
Neuropsychopharmacology. 2003 Jul;28(7):1317-27
pubmed: 12784121
Acc Chem Res. 2012 Sep 18;45(9):1460-9
pubmed: 22680975
Org Lett. 2016 Nov 18;18(22):5888-5891
pubmed: 27802043
Curr Opin Pharmacol. 2003 Oct;3(5):571-7
pubmed: 14559105
Trends Pharmacol Sci. 2010 Feb;31(2):82-8
pubmed: 20004028