Anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 07 06 2022
accepted: 05 08 2022
pubmed: 16 8 2022
medline: 30 9 2022
entrez: 15 8 2022
Statut: ppublish

Résumé

The demand for environmentally friendly and cost-effective plant-based products for the development of cancer therapeutics has been increasing. Yohimbine (α We estimated the anticancer efficacy of yohimbine using different assays, such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell cytotoxicity, cell morphology, cell apoptosis, reactive oxygen species (ROS) formation, and modulation in the mitochondrial membrane potential (MMP). Yohimbine showed a dose-dependent increase in cytotoxicity with a 50% inhibitory concentration (IC Overall, yohimbine showed a significant anticancer potential against drug-resistant oral cancer KB-ChR-8-5 cells. Our study suggests that besides being an aphrodisiac, yohimbine can be used as a drug repurposing agent. However, more research is required in different in vitro and in vivo models to confirm the feasibility of yohimbine in clinics.

Sections du résumé

BACKGROUND BACKGROUND
The demand for environmentally friendly and cost-effective plant-based products for the development of cancer therapeutics has been increasing. Yohimbine (α
METHODS METHODS
We estimated the anticancer efficacy of yohimbine using different assays, such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell cytotoxicity, cell morphology, cell apoptosis, reactive oxygen species (ROS) formation, and modulation in the mitochondrial membrane potential (MMP).
RESULTS RESULTS
Yohimbine showed a dose-dependent increase in cytotoxicity with a 50% inhibitory concentration (IC
CONCLUSION CONCLUSIONS
Overall, yohimbine showed a significant anticancer potential against drug-resistant oral cancer KB-ChR-8-5 cells. Our study suggests that besides being an aphrodisiac, yohimbine can be used as a drug repurposing agent. However, more research is required in different in vitro and in vivo models to confirm the feasibility of yohimbine in clinics.

Identifiants

pubmed: 35970968
doi: 10.1007/s11033-022-07847-7
pii: 10.1007/s11033-022-07847-7
doi:

Substances chimiques

Adrenergic Antagonists 0
Aphrodisiacs 0
Reactive Oxygen Species 0
Yohimbine 2Y49VWD90Q

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9565-9573

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Nandi S, Dey R, Samadder A, Saxena A, Saxena AK (2022) Natural Sourced inhibitors of EGFR, PDGFR, FGFR and VEGFRMediated signaling pathways as potential anticancer agents. Curr Med Chem 29(2):212–234. https://doi.org/10.2174/0929867328666210303101345
doi: 10.2174/0929867328666210303101345 pubmed: 33655823
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660
doi: 10.3322/caac.21660
Duarte D, Vale N (2022) Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov 3:100110. https://doi.org/10.1016/j.crphar.2022.100110
doi: 10.1016/j.crphar.2022.100110 pubmed: 35620200 pmcid: 9127325
Mishra A, Dey S (2019) Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules 9(11):740. https://doi.org/10.3390/biom9110740
doi: 10.3390/biom9110740 pmcid: 6920920
Babich O, Larina V, Ivanova S, Tarasov A, Povydysh M, Orlova A et al (2022) Phytotherapeutic approaches to the prevention of age-related changes and the extension of active longevity. Molecules 27(7):2276. https://doi.org/10.3390/molecules27072276
doi: 10.3390/molecules27072276 pubmed: 35408672 pmcid: 9000830
Yang H, Poznik M, Tang S, Xue P, Du L, Liu C et al (2021) Synthesis of conformationally liberated yohimbine analogues and evaluation of cytotoxic activity. ACS Omega 6(29):19291–19303. https://doi.org/10.1021/acsomega.1c02784
doi: 10.1021/acsomega.1c02784 pubmed: 34337266 pmcid: 8320076
Jabir NR, Firoz CK, Zughaibi TA, Alsaadi MA, Abuzenadah AM, Al-Asmari AI et al (2022) Pharmacological insights of yohimbine: a literature perspective. Annal Med
Obreshkova D, Tsvetkova D (2016) Validation of HPLC method with UV-detection for determination of yohimbine containing products. Pharmacia 63:3–9
Hai-Bo L, Yong P, Lu-qi H, Jun X, Pei-Gen X (2013) Mechanism of selective inhibition of yohimbine and Its derivatives in adrenoceptor α2 subtypes. J Chem 2013:e783058. https://doi.org/10.1155/2013/783058
doi: 10.1155/2013/783058
Abuzenadah A, Al-Sayes F, Alam S, Hoque M, Karim S, Hussain I et al (2022) Identification of potential poly(ADP-ribose)polymerase-1 inhibitors derived from Rauwolfia serpentina: possible implication in cancer therapy. Evid Based Complemt Alter Med 2022:3787162. https://doi.org/10.1155/2022/
doi: 10.1155/2022/
Abuzenadah A, Al-Sayes F, Alam S, Hoque M, Karim S, Hussain I et al (2022) Elucidating anti-angiogenic potential of Rauwolfia serpentina: VEGFR-2 targeting based molecular docking study. Evid Based Complement Alter Med 2022:6224666. https://doi.org/10.1155/2021/
doi: 10.1155/2021/
Farouk M, Abd El-Aziz L, El-Gindy AE, Shokry E (2011) Validated methods for determination of yohimbine hydrochloride in the presence of its degradation products. Bull Faculty Pharm Cairo Univ 49(2):67–79. https://doi.org/10.1016/j.bfopcu.2011.09.002
doi: 10.1016/j.bfopcu.2011.09.002
Miller ER, Hovey MT, Scheidt KA (2020) A concise, enantioselective approach for the synthesis of yohimbine alkaloids. J Am Chem Soc 142(5):2187–2192. https://doi.org/10.1021/jacs.9b12319
doi: 10.1021/jacs.9b12319 pubmed: 31951394 pmcid: 7185878
Tam SW, Worcel M, Wyllie M (2001) Yohimbine: a clinical review. Pharmacol Ther 91(3):215–243. https://doi.org/10.1016/s0163-7258(01)00156-5
doi: 10.1016/s0163-7258(01)00156-5 pubmed: 11744068
Senbel AM, Mostafa T (2008) Yohimbine enhances the effect of sildenafil on erectile process in rats. Int J Impot Res 20(4):409–417. https://doi.org/10.1038/sj.ijir.3901630
doi: 10.1038/sj.ijir.3901630 pubmed: 18418393
Coelho M, Moz M, Correia G, Teixeira A, Medeiros R, Ribeiro L (2015) Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol Rep 33(5):2513–2520. https://doi.org/10.3892/or.2015.3874
doi: 10.3892/or.2015.3874 pubmed: 25812650
Barbieri A, Bimonte S, Palma G, Luciano A, Rea D, Giudice A et al (2015) The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int J Oncol 47(2):527–534. https://doi.org/10.3892/ijo.2015.3038
doi: 10.3892/ijo.2015.3038 pubmed: 26058426
Lin Q, Wang F, Yang R, Zheng X, Gao H, Zhang P (2013) Effect of chronic restraint stress on human colorectal carcinoma growth in mice. Plos ONE 8(4):e61435. https://doi.org/10.1371/journal.pone.0061435
doi: 10.1371/journal.pone.0061435 pubmed: 23585898 pmcid: 3621827
Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP et al (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse. 35(2):79–95
doi: 10.1002/(SICI)1098-2396(200002)35:2<79::AID-SYN1>3.0.CO;2-X
Paciaroni NG, Norwood VM, Ratnayake R, Luesch H, Huigens RW (2020) Yohimbine as a starting point to access diverse natural product-like agents with re-programmed activities against cancer-relevant GPCR targets. Bioorg Med Chem 28(14):115546. https://doi.org/10.1016/j.bmc.2020.115546
doi: 10.1016/j.bmc.2020.115546 pubmed: 32616180 pmcid: 7392148
Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F (2021) GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharma J 29(6):539–551. https://doi.org/10.1016/j.jsps.2021.04.015
doi: 10.1016/j.jsps.2021.04.015
Amaro F, Silva D, Reguengo H, Oliveira JC, Quintas C, Vale N et al (2020) β-Adrenoceptor activation in breast MCF-10A cells induces a pattern of catecholamine production similar to that of tumorigenic MCF-7 cells. Int J Mol Sci 21(21):7968. https://doi.org/10.3390/ijms21217968
doi: 10.3390/ijms21217968 pmcid: 7672553
Dal Monte M, Calvani M, Cammalleri M, Favre C, Filippi L, Bagnoli P (2019) β-Adrenoceptors as drug targets in melanoma: novel preclinical evidence for a role of β3-adrenoceptors. Br J Pharmacol 176(14):2496–2508. https://doi.org/10.1111/bph.14552
doi: 10.1111/bph.14552
Yazawa T, Kaira K, Shimizu K, Shimizu A, Mori K, Nagashima T et al (2016) Prognostic significance of β2-adrenergic receptor expression in non-small cell lung cancer. Am J Transl Res 8(11):5059–5070
pubmed: 27904707 pmcid: 5126349
Dai S, Mo Y, Wang Y, Xiang B, Liao Q, Zhou M et al (2020) Chronic stress promotes cancer development. Front Oncol. https://doi.org/10.3389/fonc.2020.01492
doi: 10.3389/fonc.2020.01492 pubmed: 33708615 pmcid: 7786138
Baskić D, Popović S, Ristić P, Arsenijević NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30(11):924–932. https://doi.org/10.1016/j.cellbi.2006.06.016
doi: 10.1016/j.cellbi.2006.06.016 pubmed: 16895761
Alharthy SA, Tabrez S, Mirza AA, Zughaibi TA, Firoz CK, Dutta M (2022) Sugiol suppresses the proliferation of human U87 glioma cells via induction of apoptosis and cell cycle arrest. Evid Based Complement Alter Med 2022:e7658899. https://doi.org/10.1155/2022/7658899
doi: 10.1155/2022/7658899
Tabrez S, Hoque M, Suhail M, Khan MI, Zughaibi TA, Khan AU (2022) Identification of anticancer bioactive compounds derived from Ficus sp by targeting Poly[ADP-ribose]polymerase 1 (PARP-1). J King Saud Univ Sci 34(5):102079. https://doi.org/10.1016/j.jksus.2022.102079
doi: 10.1016/j.jksus.2022.102079
Tabrez S, Khan AU, Mirza AA, Suhail M, Jabir NR, Zughaibi TA et al (2022) Biosynthesis of copper oxide nanoparticles and its therapeutic efficacy against colon cancer. Nanotechnol Rev 11(1):1322–1331. https://doi.org/10.1515/ntrev-2022-0081
doi: 10.1515/ntrev-2022-0081
Prasathkumar M, Anisha S, Dhrisya C, Becky R, Sadhasivam S (2021) Therapeutic and pharmacological efficacy of selective Indian medicinal plants – a review. Phytomedicine Plus 1(2):100029. https://doi.org/10.1016/j.phyplu.2021.100029
doi: 10.1016/j.phyplu.2021.100029
Zughaibi TA, Suhail M, Tarique M, Tabrez S (2021) Targeting PI3K/Akt/mTOR pathway by different flavonoids: a cancer chemopreventive approach. Int J Mol Sci 22(22):12455. https://doi.org/10.3390/ijms222212455
doi: 10.3390/ijms222212455 pubmed: 34830339 pmcid: 8621356
Tabrez S, Khan A, Suhail M, Khan M, Zughaibi T, Hoque M (2022) Biosynthesis of ZnO NPs from pumpkin seeds extract and elucidation of its anticancer activity against breast cancer. Nanotechnol Rev 11:2714
doi: 10.1515/ntrev-2022-0154
Tabrez S, Zughaibi T, Hoque M, Suhail M, Khan M, Khan A (2022) Targeting glutaminase by natural compounds: structure-based virtual screening and molecular dynamics simulation approach to suppress cancer progression. Molecules 27:5047
doi: 10.3390/molecules27155042
Gowd V, Ahmad A, Tarique M, Suhail M, Zughaibi TA, Tabrez S et al (2022) Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2022.03.026
doi: 10.1016/j.semcancer.2022.03.026 pubmed: 36087856
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R et al (2022) The role of natural products and their multitargeted approach to treat solid cancer. Cells 11(14):2209. https://doi.org/10.3390/cells11142209
doi: 10.3390/cells11142209 pubmed: 35883653 pmcid: 9318484
Gérard C, Goldbeter A (2014) The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition. Interf Focus 4(3):20130075. https://doi.org/10.1098/rsfs.2013.0075
doi: 10.1098/rsfs.2013.0075
Stefanowicz-Hajduk J, Hering A, Gucwa M, Sztormowska-Achranowicz K, Kowalczyk M, Soluch A et al (2022) An in vitro anticancer, antioxidant, and phytochemical study on water extract of kalanchoe daigremontiana Raym-Hamet and H. Perrier. Molecules. 27(7):2280. https://doi.org/10.3390/molecules27072280
doi: 10.3390/molecules27072280 pubmed: 35408681 pmcid: 9000682
Alserihi RF, Mohammed MRS, Kaleem M, Khan MI, Sechi M, Sanna V et al (2022) Development of (−)-epigallocatechin-3-gallate-loaded folate receptor-targeted nanoparticles for prostate cancer treatment. Nanotechnol Rev 11(1):298–311. https://doi.org/10.1515/ntrev-2022-0013
doi: 10.1515/ntrev-2022-0013
Tabrez S, Jabir NR, Adhami VM, Khan MI, Moulay M, Kamal MA et al (2020) Nanoencapsulated dietary polyphenols for cancer prevention and treatment: successes and challenges. Nanomed (Lond) 15(11):1147–62. https://doi.org/10.2217/nnm-2019-0398
doi: 10.2217/nnm-2019-0398
Lam VQ, Anh LH, Quan NV, Xuan TD, Hanamura I, Uchino K et al (2022) Cytotoxicity of callerya speciosa fractions against myeloma and lymphoma cell lines. Molecules 27(7):2322. https://doi.org/10.3390/molecules27072322
doi: 10.3390/molecules27072322 pubmed: 35408721 pmcid: 9000591
Zughaibi TA, Mirza AA, Suhail M, Jabir NR, Zaidi SK, Wasi S et al (2022) Evaluation of anticancer potential of biogenic copper oxide nanoparticles (CuO NPs) against breast cancer. J Nanomater 2022:e5326355. https://doi.org/10.1155/2022/5326355
doi: 10.1155/2022/5326355
Islam BU, Khan MS, Husain FM, Rehman MT, Zughaibi TA, Abuzenadah AM et al (2021) mTOR Targeted cancer chemoprevention by flavonoids. Curr Med Chem 28(39):8068–8082. https://doi.org/10.2174/0929867327666201109122025
doi: 10.2174/0929867327666201109122025
Shen S-G, Zhang D, Hu H-T, Li J-H, Wang Z, Ma Q-Y (2008) Effects of alpha-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro. World J Gastroenterol 14(15):2358–2363. https://doi.org/10.3748/wjg.14.2358
doi: 10.3748/wjg.14.2358 pubmed: 18416462 pmcid: 2705090
Zhan G, Miao R, Zhang F, Wang X, Zhang X, Guo Z (2020) Cytotoxic yohimbine-type alkaloids from the leaves of Rauvolfia vomitoria. Chem Biodivers 17(12):e2000647. https://doi.org/10.1002/cbdv.202000647
doi: 10.1002/cbdv.202000647 pubmed: 33044757
Liu K, Liu P-c, Liu R, Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21:15–20. https://doi.org/10.12659/MSMBR.893327
doi: 10.12659/MSMBR.893327 pubmed: 25664686 pmcid: 4332266
Kc B, Paudel SN, Rayamajhi S, Karna D, Adhikari S, Shrestha BG et al (2016) Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231). Chem Cent J 10:16. https://doi.org/10.1186/s13065-016-0162-3
doi: 10.1186/s13065-016-0162-3 pubmed: 27042206 pmcid: 4818508
Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12. https://doi.org/10.1186/1472-6750-5-12
doi: 10.1186/1472-6750-5-12 pubmed: 15885144 pmcid: 1142306
Gherghi IC, Girousi ST, Voulgaropoulos AN, Tzimou-Tsitouridou R (2003) Study of interactions between DNA-ethidium bromide (EB) and DNA-acridine orange (AO), in solution, using hanging mercury drop electrode (HMDE). Talanta 61(2):103–112. https://doi.org/10.1016/S0039-9140(03)00238-8
doi: 10.1016/S0039-9140(03)00238-8 pubmed: 18969168
Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417. https://doi.org/10.1038/s41571-020-0341-y
doi: 10.1038/s41571-020-0341-y pubmed: 32203277 pmcid: 8211386
Castillo Ferrer C, Berthenet K, Ichim G (2021) Apoptosis – fueling the oncogenic fire. FEBS J 288(15):4445–4463. https://doi.org/10.1111/febs.15624
doi: 10.1111/febs.15624 pubmed: 33179432
Delierneux C, Kouba S, Shanmughapriya S, Potier-Cartereau M, Trebak M, Hempel N (2020) Mitochondrial calcium regulation of redox signaling in cancer. Cells 9(2):E432. https://doi.org/10.3390/cells9020432
doi: 10.3390/cells9020432 pubmed: 32059571
Jaudan A, Sharma S, Malek SNA, Dixit A (2018) Induction of apoptosis by pinostrobin in human cervical cancer cells: possible mechanism of action. Plos ONE. 13(2):e0191523. https://doi.org/10.1371/journal.pone.0191523
doi: 10.1371/journal.pone.0191523 pubmed: 29420562 pmcid: 5805241
Zou P, Zhang J, Xia Y, Kanchana K, Guo G, Chen W et al (2015) ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget 6(8):5860–5876. https://doi.org/10.18632/oncotarget.3333
doi: 10.18632/oncotarget.3333 pubmed: 25714022 pmcid: 4467407

Auteurs

Nasimudeen R Jabir (NR)

Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India.

Mohd Shahnawaz Khan (MS)

Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia. moskhan@ksu.edu.sa.

Nouf Omar Alafaleq (NO)

Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.

Huma Naz (H)

Department of Medicine, University of Missouri, Columbia, MO, 65201, USA.

Bakrudeen Ali Ahmed (BA)

Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India. drbakru@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH