De novo mutations in the BMP signaling pathway in lambdoid craniosynostosis.
Journal
Human genetics
ISSN: 1432-1203
Titre abrégé: Hum Genet
Pays: Germany
ID NLM: 7613873
Informations de publication
Date de publication:
Jan 2023
Jan 2023
Historique:
received:
19
05
2022
accepted:
08
08
2022
pubmed:
24
8
2022
medline:
18
1
2023
entrez:
23
8
2022
Statut:
ppublish
Résumé
Lambdoid craniosynostosis (CS) is a congenital anomaly resulting from premature fusion of the cranial suture between the parietal and occipital bones. Predominantly sporadic, it is the rarest form of CS and its genetic etiology is largely unexplored. Exome sequencing of 25 kindreds, including 18 parent-offspring trios with sporadic lambdoid CS, revealed a marked excess of damaging (predominantly missense) de novo mutations that account for ~ 40% of sporadic cases. These mutations clustered in the BMP signaling cascade (P = 1.6 × 10
Identifiants
pubmed: 35997807
doi: 10.1007/s00439-022-02477-2
pii: 10.1007/s00439-022-02477-2
doi:
Substances chimiques
Transcription Factors
0
Nfix protein, mouse
0
NFI Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21-32Subventions
Organisme : NIH HHS
ID : M#UM1HG006504-05
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Adam RC et al (2020) NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat Cell Biol 22(6):640–650
doi: 10.1038/s41556-020-0513-0
Boyden LM et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346(20):1513–1521
doi: 10.1056/NEJMoa013444
Calpena E et al (2021) Unexpected role of SIX1 variants in craniosynostosis: expanding the phenotype of SIX1-related disorders. J Med Genet 59:165–169
doi: 10.1136/jmedgenet-2020-107459
Cheng Z et al (2011) Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18(11):1204–1210
doi: 10.1038/nsmb.2139
Farmer DT et al (2021) The developing mouse coronal suture at single-cell resolution. Nat Commun 12(1):4797
doi: 10.1038/s41467-021-24917-9
Flaherty K, Singh N, Richtsmeier JT (2016) Understanding craniosynostosis as a growth disorder. Wiley Interdiscip Rev Dev Biol 5:429–459
doi: 10.1002/wdev.227
Gadi J et al (2013) The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors. J Biol Chem 288(35):25400–25413
doi: 10.1074/jbc.M112.413377
Glass GE et al (2019) ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome. Am J Med Genet A 179(4):615–627
doi: 10.1002/ajmg.a.61073
Gurrieri F et al (2015) NFIX mutations affecting the DNA-binding domain cause a peculiar overgrowth syndrome (Malan syndrome): a new patients series. Eur J Med Genet 58(9):488–491
doi: 10.1016/j.ejmg.2015.06.009
Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20(1):296
doi: 10.1186/s13059-019-1874-1
Hao Y et al (2021) Integrated analysis of multimodal single-cell data. Cell 184(13):3573-3587 e29
doi: 10.1016/j.cell.2021.04.048
Holmes G et al (2020) Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis. Cell Rep 32(1):107871
doi: 10.1016/j.celrep.2020.107871
Hou C et al (2020) Structural insight into the DNA binding function of transcription factor ERF. Biochemistry 59:4499–4506
doi: 10.1021/acs.biochem.0c00774
Jonker L (2014) TGF-beta & BMP receptors endoglin and ALK1: overview of their functional role and status as antiangiogenic targets. Microcirculation 21(2):93–103
doi: 10.1111/micc.12099
Jumper J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589
doi: 10.1038/s41586-021-03819-2
Kwee ML et al (2005) An autosomal dominant high bone mass phenotype in association with craniosynostosis in an extended family is caused by an LRP5 missense mutation. J Bone Miner Res 20(7):1254–1260
doi: 10.1359/JBMR.050303
Malan V et al (2010) Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay engender either a Sotos-like or a Marshall-Smith syndrome. Am J Hum Genet 87(2):189–198
doi: 10.1016/j.ajhg.2010.07.001
Maruyama T et al (2021) BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 13:583
doi: 10.1126/scitranslmed.abb4416
McDonald J et al (2011) Molecular diagnosis in hereditary hemorrhagic telangiectasia: findings in a series tested simultaneously by sequencing and deletion/duplication analysis. Clin Genet 79(4):335–344
doi: 10.1111/j.1399-0004.2010.01596.x
Onishi Y et al (2017) The transcriptional modulator Ifrd1 is a negative regulator of BMP-2-dependent osteoblastogenesis. Biochem Biophys Res Commun 482(2):329–334
doi: 10.1016/j.bbrc.2016.11.063
Patel A et al (2014) The impact of age at surgery on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast Reconstr Surg 134(4):608e-e617
doi: 10.1097/PRS.0000000000000511
Ramasamy SK et al (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380
doi: 10.1038/nature13146
Rindone AN et al (2021) Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat Commun 12(1):6219
doi: 10.1038/s41467-021-26455-w
Sharma VP et al (2013) Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet 45(3):304–307
doi: 10.1038/ng.2531
Shi Y et al (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 94(5):585–594
doi: 10.1016/S0092-8674(00)81600-1
Stefancsik R, Sarkar S (2003) Relationship between the DNA binding domains of SMAD and NFI/CTF transcription factors defines a new superfamily of genes. DNA Seq 14(4):233–239
doi: 10.1080/1085566031000141126
Teixeira CC et al (2010) Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J Biol Chem 285(40):31055–31065
doi: 10.1074/jbc.M109.079962
Timberlake AT, Persing JA (2018) Genetics of nonsyndromic craniosynostosis. Plast Reconstr Surg 141(6):1508–1516
doi: 10.1097/PRS.0000000000004374
Timberlake AT et al (2016) Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. Elife. https://doi.org/10.7554/eLife.20125
doi: 10.7554/eLife.20125
Timberlake AT et al (2017) De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc Natl Acad Sci USA 114(35):E7341–E7347. https://doi.org/10.1073/pnas.1709255114
doi: 10.1073/pnas.1709255114
Timberlake AT et al (2019) Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proc Natl Acad Sci USA 116(30):15116–15121
doi: 10.1073/pnas.1902041116
Tonne E et al (2021) Benefits of clinical criteria and high-throughput sequencing for diagnosing children with syndromic craniosynostosis. Eur J Hum Genet 29(6):920–929
doi: 10.1038/s41431-020-00788-4
Twigg SR, Wilkie AO (2015) A genetic-pathophysiological framework for craniosynostosis. Am J Hum Genet 97(3):359–377
doi: 10.1016/j.ajhg.2015.07.006
Twigg SR et al (2013) Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 45(3):308–313
doi: 10.1038/ng.2539
Ware JS et al (2015) Interpreting de novo variation in human disease using denovolyzeR. Curr Protoc Hum Genet 87:7 25 1-7 25 15
Wei Q et al (2015) A Bayesian framework for de novo mutation calling in parents-offspring trios. Bioinformatics 31(9):1375–1381
doi: 10.1093/bioinformatics/btu839
Wilk K et al (2017) Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Rep 8(4):933–946
doi: 10.1016/j.stemcr.2017.03.002