The Chromium Dimer: Closing a Chapter of Quantum Chemistry.


Journal

Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056

Informations de publication

Date de publication:
07 09 2022
Historique:
pubmed: 25 8 2022
medline: 9 9 2022
entrez: 24 8 2022
Statut: ppublish

Résumé

The complex electronic structure and unusual potential energy curve of the chromium dimer have fascinated scientists for decades, with agreement between theory and experiment so far elusive. Here, we present a new ab initio simulation of the potential energy curve and vibrational spectrum that significantly improves on all earlier estimates. Our data support a shift in earlier experimental assignments of a cluster of vibrational frequencies by one quantum number. The new vibrational assignment yields an experimentally derived potential energy curve in quantitative agreement with theory across all bond lengths and across all measured frequencies. By solving this long-standing problem, our results raise the possibility of quantitative quantum chemical modeling of transition metal clusters with spectroscopic accuracy.

Identifiants

pubmed: 36001866
doi: 10.1021/jacs.2c06357
pmc: PMC9460780
doi:

Substances chimiques

Chromium 0R0008Q3JB

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

15932-15937

Références

Nat Chem. 2009 Oct;1(7):529-36
pubmed: 21378933
Science. 2005 Nov 4;310(5749):844-7
pubmed: 16179432
J Chem Phys. 2021 Jun 14;154(22):224116
pubmed: 34241198
Nat Chem. 2014 Oct;6(10):927-33
pubmed: 25242489
J Chem Phys. 2005 Dec 22;123(24):241102
pubmed: 16396527
Angew Chem Int Ed Engl. 2006 Jun 2;45(23):3804-7
pubmed: 16671122
Phys Rev Lett. 1985 Feb 18;54(7):661-664
pubmed: 10031583
J Chem Phys. 2015 Sep 14;143(10):102815
pubmed: 26374008
J Phys Chem Lett. 2021 Feb 4;12(4):1268-1274
pubmed: 33497240
J Chem Phys. 2014 Sep 21;141(11):111101
pubmed: 25240335
Nat Chem. 2019 Nov;11(11):1026-1033
pubmed: 31570817
J Chem Phys. 2005 Aug 8;123(6):64107
pubmed: 16122300
Angew Chem Int Ed Engl. 2007;46(9):1469-72
pubmed: 17225237
J Chem Phys. 2020 Jul 14;153(2):024109
pubmed: 32668948
Nat Chem. 2013 Aug;5(8):660-6
pubmed: 23881496
J Chem Theory Comput. 2022 Feb 8;18(2):749-762
pubmed: 35060382
J Phys Chem Lett. 2019 Nov 7;10(21):6762-6770
pubmed: 31613637
J Chem Theory Comput. 2013 Aug 13;9(8):3375-84
pubmed: 26584093

Auteurs

Henrik R Larsson (HR)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States.

Huanchen Zhai (H)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

C J Umrigar (CJ)

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States.

Garnet Kin-Lic Chan (GK)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Articles similaires

Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Algorithms Software Artificial Intelligence Computer Simulation
Humans Robotic Surgical Procedures Clinical Competence Male Female

A computational model for bacteriophage ϕX174 gene expression.

Alexis M Hill, Tanvi A Ingle, Claus O Wilke
1.00
Gene Expression Regulation, Viral Promoter Regions, Genetic Bacteriophage phi X 174 Computer Simulation Models, Genetic

Classifications MeSH