Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 08 2022
Historique:
received: 02 12 2021
accepted: 11 08 2022
entrez: 24 8 2022
pubmed: 25 8 2022
medline: 27 8 2022
Statut: epublish

Résumé

The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.

Identifiants

pubmed: 36002557
doi: 10.1038/s41598-022-18513-0
pii: 10.1038/s41598-022-18513-0
pmc: PMC9400568
doi:

Substances chimiques

Anti-Infective Agents 0
RNA, Viral 0
Methylene Blue T42P99266K

Types de publication

Clinical Trial Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14438

Informations de copyright

© 2022. The Author(s).

Références

Cho, N. J. & Glenn, J. S. Materials science approaches in the development of broad-spectrum antiviral therapies. Nat. Mater. 19, 813–816 (2020).
pubmed: 32427958 doi: 10.1038/s41563-020-0698-4
Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).
pubmed: 32340022 doi: 10.1038/s41586-020-2271-3
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429-446.e14 (2020).
pubmed: 32526206 pmcid: 7250779 doi: 10.1016/j.cell.2020.05.042
Booth, T. F. et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 191, 1472–1477 (2005).
pubmed: 15809906 doi: 10.1086/429634
Ahn, J. H. et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J. Clin. Invest. 131, 33 (2021).
doi: 10.1172/JCI148517
Zou, L. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 1177–1179 (2020).
pubmed: 32074444 pmcid: 7121626 doi: 10.1056/NEJMc2001737
Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).
pubmed: 32327758 pmcid: 8637938 doi: 10.1038/s41591-020-0868-6
Fu, X., Fang, Y. & Yao, M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed. Res. Int. 2013, 1–9 (2013).
O’Riordan, K. et al. Photoinactivation of Mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob. Agents Chemother. 50, 1828–1834 (2006).
pubmed: 16641456 pmcid: 1472192 doi: 10.1128/AAC.50.5.1828-1834.2006
Hu, X., Huang, Y.-Y., Wang, Y., Wang, X. & Hamblin, M. R. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front. Microbiol. 9, 1299 (2018).
pubmed: 29997579 pmcid: 6030385 doi: 10.3389/fmicb.2018.01299
Carmello, J. C. et al. Treatment of oral candidiasis using photodithazine?—Mediated photodynamic therapy in vivo. PLoS ONE 11, e0156947 (2016).
pubmed: 27253525 pmcid: 4890797 doi: 10.1371/journal.pone.0156947
Lustigman, S. & Ben-Hur, E. Photosensitized inactivation of Plasmodium falciparum in human red cells by phthalocyanines. Transfusion 36, 543–546 (1996).
pubmed: 8669087 doi: 10.1046/j.1537-2995.1996.36696269514.x
Smith, T. G. & Kain, K. C. Inactivation of Plasmodium falciparum by photodynamic excitation of heme-cycle intermediates derived from delta-aminolevulinic acid. J. Infect. Dis. 190, 184–191 (2004).
pubmed: 15195259 doi: 10.1086/421503
Baptista, M. S. & Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Biol. Res. 44, 1–10 (2011).
pubmed: 21152709 doi: 10.1590/S0100-879X2010007500141
Barbosa, A. F. S. et al. Anti-Trypanosoma cruzi effect of the photodynamic antiparasitic chemotherapy using phenothiazine derivatives as photosensitizers. Lasers Med. Sci. 35, 79–85 (2020).
pubmed: 31081523 doi: 10.1007/s10103-019-02795-4
Gottlieb, P. et al. Inactivation of Trypanosoma cruzi trypomastigote forms in blood components by photodynamic treatment with phthalocyanines. Photochem. Photobiol. 62, 869–874 (1995).
pubmed: 8570725 doi: 10.1111/j.1751-1097.1995.tb09149.x
Belousova, I. M. et al. Photodynamic inactivation of enveloped virus in protein plasma preparations by solid-phase fullerene-based photosensitizer. Photodiagn. Photodyn. Ther. 11, 165–170 (2014).
doi: 10.1016/j.pdpdt.2014.02.009
Casteel, M. J., Jayaraj, K., Gold, A., Ball, L. M. & Sobsey, M. D. Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem. Photobiol. 80, 294–300 (2004).
pubmed: 15362943 doi: 10.1562/2004-04-05-RA-134.1
Galasso, M. et al. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat. Commun. 10, 1–12 (2019).
doi: 10.1038/s41467-018-08261-z
Li, D. et al. Treatment of HPV infection-associated low grade cervical intraepithelial neoplasia with 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagn. Photodyn. Ther. 32, 101974 (2020).
doi: 10.1016/j.pdpdt.2020.101974
Wen, L. Y., Bae, S.-M., Do, J. H., Park, K.-S. & Ahn, W. S. The effects of photodynamic therapy with photodithazine on HPV 16 E6/E7 associated cervical cancer model. J. Porphyrins Phthalocyanines 15, 174–180 (2011).
doi: 10.1142/S1088424611003082
Rywkin, S. et al. New phthalocyanines for photodynamic virus inactivation in red blood cell concentrates. Photochem. Photobiol. 60, 165–170 (1994).
pubmed: 7938215 doi: 10.1111/j.1751-1097.1994.tb05085.x
Eickmann, M. et al. Inactivation of three emerging viruses—Severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus—In platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang 115, 146–151 (2020).
pubmed: 31930543 pmcid: 7169309 doi: 10.1111/vox.12888
Floyd, R. A., Schneider, J. E. & Dittmer, D. P. Methylene blue photoinactivation of RNA viruses. Antiviral Res. 61, 141–151 (2004).
pubmed: 15168794 doi: 10.1016/j.antiviral.2003.11.004
Wong, T.-W. et al. Methylene blue-mediated photodynamic inactivation as a novel disinfectant of enterovirus 71. J. Antimicrob. Chemother. 65, 2176–2182 (2010).
pubmed: 20719762 doi: 10.1093/jac/dkq301
Fryk, J. J. et al. Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light. Transfusion 56, 2278–2285 (2016).
pubmed: 27456861 doi: 10.1111/trf.13729
Faddy, H. M. et al. Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion 59, 2223–2227 (2019).
pubmed: 31050821 doi: 10.1111/trf.15332
Wainwright, M. Local treatment of viral disease using photodynamic therapy. Int. J. Antimicrob. Agents 21, 510–520 (2003).
pubmed: 12791463 doi: 10.1016/S0924-8579(03)00035-9
Kharkwal, G. B., Sharma, S. K., Huang, Y.-Y., Dai, T. & Hamblin, M. R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 43, 755–767 (2011).
pubmed: 22057503 pmcid: 3449167 doi: 10.1002/lsm.21080
Horowitz, B. & Ben-Hur, E. Efforts in minimizing risk of viral transmission through viral inactivation. Ann. Med. 32, 475–484 (2000).
pubmed: 11087168 doi: 10.3109/07853890009002023
Meller, D. M., Hickok, J., Andersen, R., Loebel, N. G. & Wilson, M. Photodisinfection Therapy: Essential Technology for Infection Control. Vol. 13. (2020).
Bryce, E. et al. Nasal photodisinfection and chlorhexidine wipes decrease surgical site infections: A historical control study and propensity analysis. J. Hosp. Infect. 88, 89–95 (2014).
pubmed: 25171975 doi: 10.1016/j.jhin.2014.06.017
Kipshidze, N., Yeo, N. & Kipshidze, N. Photodynamic therapy for COVID-19. Nat. Photon. 14, 651–652 (2020).
doi: 10.1038/s41566-020-00703-9
Law, S., Lo, C., Han, J., Leung, A. W. & Xu, C. Photodynamic therapy with curcumin for combating SARS-CoV-2. Photodiagn. Photodyn. Ther. 34, 102284 (2021).
doi: 10.1016/j.pdpdt.2021.102284
Conrado, P. C. V. et al. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagn. Photodyn. Ther. 34, 102221 (2021).
doi: 10.1016/j.pdpdt.2021.102221
Sanchez de Araujo, H. & Ferreira, F. Quantum dots and photodynamic therapy in COVID-19 treatment. Quantum Eng. 3, 78 (2021).
doi: 10.1002/que2.78
Svyatchenko, V. A., Nikonov, S. D., Mayorov, A. P., Gelfond, M. L. & Loktev, V. B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagn. Photodyn. Ther. 33, 102112 (2021).
doi: 10.1016/j.pdpdt.2020.102112
Arentz, J. & von der Heide, H.-J. Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection. Photodiagn. Photodyn. Ther. 37, 102642 (2022).
doi: 10.1016/j.pdpdt.2021.102642
Schikora, D., Hepburn, J. & Plavin, S. Citation: Reduction of the Viral Load by Non-Invasive Photodynamic Therapy in Early Stages of COVID-19 Infection. (2020).
van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).
pubmed: 32182409 doi: 10.1056/NEJMc2004973
Patel, Z. M. et al. Letter: Precautions for endoscopic transnasal skull base surgery during the COVID-19 pandemic. Neurosurgery 87, E66–E67 (2020).
pubmed: 32293678 doi: 10.1093/neuros/nyaa125
Tavares, A. et al. Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8, 91–105 (2010).
pubmed: 20161973 pmcid: 2817925 doi: 10.3390/md8010091
Costa, L. et al. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res. 91, 278–282 (2011).
pubmed: 21722673 doi: 10.1016/j.antiviral.2011.06.007
Giulio, J. & Olimpia, C. Inactivation of pathogenic microorganisms by photodynamic techniques: Mechanistic aspects and perspective applications. AntiInfect. Agents Med. Chem. 6, 119–131 (2007).
doi: 10.2174/187152107780361652
Al-Mutairi, R., Tovmasyan, A., Batinic-Haberle, I. & Benov, L. Sublethal photodynamic treatment does not lead to development of resistance. Front. Microbiol. 9, 1699 (2018).
pubmed: 30108561 pmcid: 6079231 doi: 10.3389/fmicb.2018.01699
Maisch, T. Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem. Photobiol. Sci. 14, 1518–1526 (2015).
pubmed: 26098395 doi: 10.1039/c5pp00037h
Lambert, F., Jacomy, H., Marceau, G. & Talbot, P. J. Titration of human coronaviruses, HcoV-229E and HCoV-OC43, by an indirect immunoperoxidase assay. Methods Mol. Biol. 454, 93–102 (2008).
pubmed: 19057861 doi: 10.1007/978-1-59745-181-9_8
Vijgen, L. et al. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43, 5452–5456 (2005).
pubmed: 16272469 pmcid: 1287813 doi: 10.1128/JCM.43.11.5452-5456.2005
van Elden, L. J. R. et al. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J. Infect. Dis. 189, 652–657 (2004).
pubmed: 14767819 doi: 10.1086/381207
Owczarek, K. et al. Early events during human coronavirus OC43 entry to the cell. Sci. Rep. 8, 7124 (2018).
pubmed: 29740099 pmcid: 5940804 doi: 10.1038/s41598-018-25640-0
Pearson, J. D. et al. Comparison of SARS-CoV-2 indirect and direct RT-qPCR detection methods. Virol. J. 18, 99 (2021).
pubmed: 34001180 pmcid: 8127261 doi: 10.1186/s12985-021-01574-4

Auteurs

Layla Pires (L)

University Health Network, Toronto, Canada.

Brian C Wilson (BC)

University Health Network, Toronto, Canada.
Faculty of Medicine, University of Toronto, Toronto, Canada.

Rod Bremner (R)

Faculty of Medicine, University of Toronto, Toronto, Canada.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.

Amanda Lang (A)

Roy Romanow Provincial Laboratory, Saskatchewan Health Authority, Regina, Canada.

Jeremie Larouche (J)

Faculty of Medicine, University of Toronto, Toronto, Canada.
Holland Bone and Joint Program, Sunnybrook Research Institute, 2075 Bayview Avenue S620, Toronto, ON, M4N3M5, Canada.

Ryan McDonald (R)

Roy Romanow Provincial Laboratory, Saskatchewan Health Authority, Regina, Canada.

Joel D Pearson (JD)

Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.

Daniel Trcka (D)

Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.

Jeff Wrana (J)

Faculty of Medicine, University of Toronto, Toronto, Canada.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.

James Wu (J)

Faculty of Medicine, University of Toronto, Toronto, Canada.
Holland Bone and Joint Program, Sunnybrook Research Institute, 2075 Bayview Avenue S620, Toronto, ON, M4N3M5, Canada.

Cari M Whyne (CM)

Faculty of Medicine, University of Toronto, Toronto, Canada. cari.whyne@sunnybrook.ca.
Holland Bone and Joint Program, Sunnybrook Research Institute, 2075 Bayview Avenue S620, Toronto, ON, M4N3M5, Canada. cari.whyne@sunnybrook.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH