Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 08 2022
24 08 2022
Historique:
received:
02
12
2021
accepted:
11
08
2022
entrez:
24
8
2022
pubmed:
25
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.
Identifiants
pubmed: 36002557
doi: 10.1038/s41598-022-18513-0
pii: 10.1038/s41598-022-18513-0
pmc: PMC9400568
doi:
Substances chimiques
Anti-Infective Agents
0
RNA, Viral
0
Methylene Blue
T42P99266K
Types de publication
Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14438Informations de copyright
© 2022. The Author(s).
Références
Cho, N. J. & Glenn, J. S. Materials science approaches in the development of broad-spectrum antiviral therapies. Nat. Mater. 19, 813–816 (2020).
pubmed: 32427958
doi: 10.1038/s41563-020-0698-4
Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).
pubmed: 32340022
doi: 10.1038/s41586-020-2271-3
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429-446.e14 (2020).
pubmed: 32526206
pmcid: 7250779
doi: 10.1016/j.cell.2020.05.042
Booth, T. F. et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 191, 1472–1477 (2005).
pubmed: 15809906
doi: 10.1086/429634
Ahn, J. H. et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J. Clin. Invest. 131, 33 (2021).
doi: 10.1172/JCI148517
Zou, L. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 1177–1179 (2020).
pubmed: 32074444
pmcid: 7121626
doi: 10.1056/NEJMc2001737
Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).
pubmed: 32327758
pmcid: 8637938
doi: 10.1038/s41591-020-0868-6
Fu, X., Fang, Y. & Yao, M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed. Res. Int. 2013, 1–9 (2013).
O’Riordan, K. et al. Photoinactivation of Mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob. Agents Chemother. 50, 1828–1834 (2006).
pubmed: 16641456
pmcid: 1472192
doi: 10.1128/AAC.50.5.1828-1834.2006
Hu, X., Huang, Y.-Y., Wang, Y., Wang, X. & Hamblin, M. R. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front. Microbiol. 9, 1299 (2018).
pubmed: 29997579
pmcid: 6030385
doi: 10.3389/fmicb.2018.01299
Carmello, J. C. et al. Treatment of oral candidiasis using photodithazine?—Mediated photodynamic therapy in vivo. PLoS ONE 11, e0156947 (2016).
pubmed: 27253525
pmcid: 4890797
doi: 10.1371/journal.pone.0156947
Lustigman, S. & Ben-Hur, E. Photosensitized inactivation of Plasmodium falciparum in human red cells by phthalocyanines. Transfusion 36, 543–546 (1996).
pubmed: 8669087
doi: 10.1046/j.1537-2995.1996.36696269514.x
Smith, T. G. & Kain, K. C. Inactivation of Plasmodium falciparum by photodynamic excitation of heme-cycle intermediates derived from delta-aminolevulinic acid. J. Infect. Dis. 190, 184–191 (2004).
pubmed: 15195259
doi: 10.1086/421503
Baptista, M. S. & Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Biol. Res. 44, 1–10 (2011).
pubmed: 21152709
doi: 10.1590/S0100-879X2010007500141
Barbosa, A. F. S. et al. Anti-Trypanosoma cruzi effect of the photodynamic antiparasitic chemotherapy using phenothiazine derivatives as photosensitizers. Lasers Med. Sci. 35, 79–85 (2020).
pubmed: 31081523
doi: 10.1007/s10103-019-02795-4
Gottlieb, P. et al. Inactivation of Trypanosoma cruzi trypomastigote forms in blood components by photodynamic treatment with phthalocyanines. Photochem. Photobiol. 62, 869–874 (1995).
pubmed: 8570725
doi: 10.1111/j.1751-1097.1995.tb09149.x
Belousova, I. M. et al. Photodynamic inactivation of enveloped virus in protein plasma preparations by solid-phase fullerene-based photosensitizer. Photodiagn. Photodyn. Ther. 11, 165–170 (2014).
doi: 10.1016/j.pdpdt.2014.02.009
Casteel, M. J., Jayaraj, K., Gold, A., Ball, L. M. & Sobsey, M. D. Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem. Photobiol. 80, 294–300 (2004).
pubmed: 15362943
doi: 10.1562/2004-04-05-RA-134.1
Galasso, M. et al. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat. Commun. 10, 1–12 (2019).
doi: 10.1038/s41467-018-08261-z
Li, D. et al. Treatment of HPV infection-associated low grade cervical intraepithelial neoplasia with 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagn. Photodyn. Ther. 32, 101974 (2020).
doi: 10.1016/j.pdpdt.2020.101974
Wen, L. Y., Bae, S.-M., Do, J. H., Park, K.-S. & Ahn, W. S. The effects of photodynamic therapy with photodithazine on HPV 16 E6/E7 associated cervical cancer model. J. Porphyrins Phthalocyanines 15, 174–180 (2011).
doi: 10.1142/S1088424611003082
Rywkin, S. et al. New phthalocyanines for photodynamic virus inactivation in red blood cell concentrates. Photochem. Photobiol. 60, 165–170 (1994).
pubmed: 7938215
doi: 10.1111/j.1751-1097.1994.tb05085.x
Eickmann, M. et al. Inactivation of three emerging viruses—Severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus—In platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang 115, 146–151 (2020).
pubmed: 31930543
pmcid: 7169309
doi: 10.1111/vox.12888
Floyd, R. A., Schneider, J. E. & Dittmer, D. P. Methylene blue photoinactivation of RNA viruses. Antiviral Res. 61, 141–151 (2004).
pubmed: 15168794
doi: 10.1016/j.antiviral.2003.11.004
Wong, T.-W. et al. Methylene blue-mediated photodynamic inactivation as a novel disinfectant of enterovirus 71. J. Antimicrob. Chemother. 65, 2176–2182 (2010).
pubmed: 20719762
doi: 10.1093/jac/dkq301
Fryk, J. J. et al. Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light. Transfusion 56, 2278–2285 (2016).
pubmed: 27456861
doi: 10.1111/trf.13729
Faddy, H. M. et al. Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion 59, 2223–2227 (2019).
pubmed: 31050821
doi: 10.1111/trf.15332
Wainwright, M. Local treatment of viral disease using photodynamic therapy. Int. J. Antimicrob. Agents 21, 510–520 (2003).
pubmed: 12791463
doi: 10.1016/S0924-8579(03)00035-9
Kharkwal, G. B., Sharma, S. K., Huang, Y.-Y., Dai, T. & Hamblin, M. R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 43, 755–767 (2011).
pubmed: 22057503
pmcid: 3449167
doi: 10.1002/lsm.21080
Horowitz, B. & Ben-Hur, E. Efforts in minimizing risk of viral transmission through viral inactivation. Ann. Med. 32, 475–484 (2000).
pubmed: 11087168
doi: 10.3109/07853890009002023
Meller, D. M., Hickok, J., Andersen, R., Loebel, N. G. & Wilson, M. Photodisinfection Therapy: Essential Technology for Infection Control. Vol. 13. (2020).
Bryce, E. et al. Nasal photodisinfection and chlorhexidine wipes decrease surgical site infections: A historical control study and propensity analysis. J. Hosp. Infect. 88, 89–95 (2014).
pubmed: 25171975
doi: 10.1016/j.jhin.2014.06.017
Kipshidze, N., Yeo, N. & Kipshidze, N. Photodynamic therapy for COVID-19. Nat. Photon. 14, 651–652 (2020).
doi: 10.1038/s41566-020-00703-9
Law, S., Lo, C., Han, J., Leung, A. W. & Xu, C. Photodynamic therapy with curcumin for combating SARS-CoV-2. Photodiagn. Photodyn. Ther. 34, 102284 (2021).
doi: 10.1016/j.pdpdt.2021.102284
Conrado, P. C. V. et al. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagn. Photodyn. Ther. 34, 102221 (2021).
doi: 10.1016/j.pdpdt.2021.102221
Sanchez de Araujo, H. & Ferreira, F. Quantum dots and photodynamic therapy in COVID-19 treatment. Quantum Eng. 3, 78 (2021).
doi: 10.1002/que2.78
Svyatchenko, V. A., Nikonov, S. D., Mayorov, A. P., Gelfond, M. L. & Loktev, V. B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagn. Photodyn. Ther. 33, 102112 (2021).
doi: 10.1016/j.pdpdt.2020.102112
Arentz, J. & von der Heide, H.-J. Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection. Photodiagn. Photodyn. Ther. 37, 102642 (2022).
doi: 10.1016/j.pdpdt.2021.102642
Schikora, D., Hepburn, J. & Plavin, S. Citation: Reduction of the Viral Load by Non-Invasive Photodynamic Therapy in Early Stages of COVID-19 Infection. (2020).
van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).
pubmed: 32182409
doi: 10.1056/NEJMc2004973
Patel, Z. M. et al. Letter: Precautions for endoscopic transnasal skull base surgery during the COVID-19 pandemic. Neurosurgery 87, E66–E67 (2020).
pubmed: 32293678
doi: 10.1093/neuros/nyaa125
Tavares, A. et al. Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8, 91–105 (2010).
pubmed: 20161973
pmcid: 2817925
doi: 10.3390/md8010091
Costa, L. et al. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res. 91, 278–282 (2011).
pubmed: 21722673
doi: 10.1016/j.antiviral.2011.06.007
Giulio, J. & Olimpia, C. Inactivation of pathogenic microorganisms by photodynamic techniques: Mechanistic aspects and perspective applications. AntiInfect. Agents Med. Chem. 6, 119–131 (2007).
doi: 10.2174/187152107780361652
Al-Mutairi, R., Tovmasyan, A., Batinic-Haberle, I. & Benov, L. Sublethal photodynamic treatment does not lead to development of resistance. Front. Microbiol. 9, 1699 (2018).
pubmed: 30108561
pmcid: 6079231
doi: 10.3389/fmicb.2018.01699
Maisch, T. Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem. Photobiol. Sci. 14, 1518–1526 (2015).
pubmed: 26098395
doi: 10.1039/c5pp00037h
Lambert, F., Jacomy, H., Marceau, G. & Talbot, P. J. Titration of human coronaviruses, HcoV-229E and HCoV-OC43, by an indirect immunoperoxidase assay. Methods Mol. Biol. 454, 93–102 (2008).
pubmed: 19057861
doi: 10.1007/978-1-59745-181-9_8
Vijgen, L. et al. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43, 5452–5456 (2005).
pubmed: 16272469
pmcid: 1287813
doi: 10.1128/JCM.43.11.5452-5456.2005
van Elden, L. J. R. et al. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J. Infect. Dis. 189, 652–657 (2004).
pubmed: 14767819
doi: 10.1086/381207
Owczarek, K. et al. Early events during human coronavirus OC43 entry to the cell. Sci. Rep. 8, 7124 (2018).
pubmed: 29740099
pmcid: 5940804
doi: 10.1038/s41598-018-25640-0
Pearson, J. D. et al. Comparison of SARS-CoV-2 indirect and direct RT-qPCR detection methods. Virol. J. 18, 99 (2021).
pubmed: 34001180
pmcid: 8127261
doi: 10.1186/s12985-021-01574-4