SurvMaximin: Robust federated approach to transporting survival risk prediction models.
Journal
Journal of biomedical informatics
ISSN: 1532-0480
Titre abrégé: J Biomed Inform
Pays: United States
ID NLM: 100970413
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
01
02
2022
revised:
18
07
2022
accepted:
15
08
2022
pubmed:
26
8
2022
medline:
14
10
2022
entrez:
25
8
2022
Statut:
ppublish
Résumé
For multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. For each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or a single center, corresponding to transfer learning. Simulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. The SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.
Identifiants
pubmed: 36007785
pii: S1532-0464(22)00187-3
doi: 10.1016/j.jbi.2022.104176
pmc: PMC9707637
mid: NIHMS1850166
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
104176Subventions
Organisme : NCATS NIH HHS
ID : U01 TR003528
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001881
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000005
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM013345
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS098023
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS124882
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002366
Pays : United States
Organisme : NICHD NIH HHS
ID : T32 HD040128
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002541
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES017885
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001857
Pays : United States
Organisme : NCI NIH HHS
ID : U24 CA210967
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001420
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001878
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM013337
Pays : United States
Organisme : NHLBI NIH HHS
ID : K23 HL148394
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002240
Pays : United States
Organisme : NHLBI NIH HHS
ID : L40 HL148910
Pays : United States
Informations de copyright
Copyright © 2022. Published by Elsevier Inc.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Stat Anal Data Min. 2014 Oct;7(5):385-403
pubmed: 33981381
J Clin Epidemiol. 1992 Jun;45(6):613-9
pubmed: 1607900
Stat Med. 2011 May 10;30(10):1105-17
pubmed: 21484848
J R Stat Soc Series B Stat Methodol. 2018 Sep;80(4):681-702
pubmed: 30555269
Health Aff (Millwood). 2010 Apr;29(4):668-75
pubmed: 20368597
Health Aff (Millwood). 2012 May;31(5):1108-14
pubmed: 22535502
NPJ Digit Med. 2020 Aug 19;3:109
pubmed: 32864472
J Am Med Inform Assoc. 2010 Mar-Apr;17(2):124-30
pubmed: 20190053
Int J Med Inform. 2017 May;101:100-107
pubmed: 28347440
J Am Med Inform Assoc. 2020 Jul 1;27(7):1028-1036
pubmed: 32626900
Adv Genet. 2016;93:147-90
pubmed: 26915271
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64
pubmed: 22511014
J R Stat Soc Series B Stat Methodol. 2022 Feb;84(1):149-173
pubmed: 35210933
BMC Health Serv Res. 2020 Oct 21;20(1):967
pubmed: 33087106
J Med Internet Res. 2021 Oct 11;23(10):e31400
pubmed: 34533459
Int J Epidemiol. 2010 Oct;39(5):1372-82
pubmed: 20630989
J Am Med Inform Assoc. 2015 Nov;22(6):1212-9
pubmed: 26159465
JAMA. 2019 Apr 9;321(14):1391-1399
pubmed: 30964529
BMC Med Inform Decis Mak. 2017 Jul 5;17(1):97
pubmed: 28679423