Reducing instability of inter-subject covariance of FDG uptake networks using structure-weighted sparse estimation approach.


Journal

European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 03 04 2022
accepted: 18 08 2022
pubmed: 27 8 2022
medline: 19 11 2022
entrez: 26 8 2022
Statut: ppublish

Résumé

Sparse inverse covariance estimation (SICE) is increasingly utilized to estimate inter-subject covariance of FDG uptake (FDG We retrospectively analyzed the FDG-PET and DTI data of 26 healthy controls, 41 patients with Alzheimer's disease (AD), and 30 patients with frontotemporal lobar degeneration (FTLD). Structural connectivity matrix derived from DTI data was introduced as a regularization parameter to assign individual penalties to each potential metabolic connectivity. Leave-one-out cross validation experiments were performed to assess the differential diagnosis ability of structure weighted SICE approach. A few approaches of structure weighted were compared with the standard SICE. Compared to the standard SICE, structural weighting has shown more stable performance in the supervised classification, especially in the differentiation AD vs. FTLD (accuracy of 89-90%, while unweighted SICE only 85%). There was a significant positive relationship between the minimum number of metabolic connection and the robustness of the classification accuracy (r = 0.57, P < 0.001). Shuffling experiments showed significant differences between classification score derived with true structural weighting and those obtained by randomized structure (P < 0.05). The structure-weighted sparse estimation can enhance the robustness of metabolic connectivity, which may consequently improve the differentiation of pathological phenotypes.

Identifiants

pubmed: 36018359
doi: 10.1007/s00259-022-05949-9
pii: 10.1007/s00259-022-05949-9
doi:

Substances chimiques

Fluorodeoxyglucose F18 0Z5B2CJX4D

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

80-89

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Yakushev I, Chételat G, Fischer FU, Landeau B, Bastin C, Scheurich A, et al. Metabolic and structural connectivity within the default mode network relates to working memory performance in young healthy adults. Neuroimage. 2013;79:184–90. https://doi.org/10.1016/j.neuroimage.2013.04.069 .
doi: 10.1016/j.neuroimage.2013.04.069 pubmed: 23631988
Wang M, Jiang J, Yan Z, Alberts I, Ge J, Zhang H, et al. Individual brain metabolic connectome indicator based on Kullback-Leibler divergence similarity estimation predicts progression from mild cognitive impairment to Alzheimer's dementia. Eur J Nucl Med Mol Imaging. 2020;47(12):2753–64. https://doi.org/10.1007/s00259-020-04814-x .
doi: 10.1007/s00259-020-04814-x pubmed: 32318784 pmcid: 7567735
Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, et al. Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. Neuroimage. 2010;50(3):935–49. https://doi.org/10.1016/j.neuroimage.2009.12.120 .
doi: 10.1016/j.neuroimage.2009.12.120 pubmed: 20079441
Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: methods and applications. Current opinion in neurology. 2017;30(6):677–85. https://doi.org/10.1097/wco.0000000000000494 .
doi: 10.1097/wco.0000000000000494 pubmed: 28914733
Morbelli S, Perneczky R, Drzezga A, Frisoni GB, Caroli A, van Berckel BN, et al. Metabolic networks underlying cognitive reserve in prodromal Alzheimer disease: a European Alzheimer disease consortium project. J Nucl Med. 2013;54(6):894–902. https://doi.org/10.2967/jnumed.112.113928 .
doi: 10.2967/jnumed.112.113928 pubmed: 23591639
Perani D, Farsad M, Ballarini T, Lubian F, Malpetti M, Fracchetti A, et al. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia. Proc Natl Acad Sci U S A. 2017;114(7):1690–5. https://doi.org/10.1073/pnas.1610909114 .
doi: 10.1073/pnas.1610909114 pubmed: 28137833 pmcid: 5320960
Titov D, Diehl-Schmid J, Shi K, Perneczky R, Zou N, Grimmer T, et al. Metabolic connectivity for differential diagnosis of dementing disorders. J Cereb Blood Flow Metab. 2017;37(1):252–62. https://doi.org/10.1177/0271678X15622465 .
doi: 10.1177/0271678X15622465 pubmed: 26721391
Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med. 2005;46(2):233–9.
pubmed: 15695781
Toussaint PJ, Perlbarg V, Bellec P, Desarnaud S, Lacomblez L, Doyon J, et al. Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses. Neuroimage. 2012;63(2):936–46. https://doi.org/10.1016/j.neuroimage.2012.03.091 .
doi: 10.1016/j.neuroimage.2012.03.091 pubmed: 22510256
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432–41. https://doi.org/10.1093/biostatistics/kxm045 .
doi: 10.1093/biostatistics/kxm045 pubmed: 18079126
Tucholka A, Grau-Rivera O, Falcon C, Rami L, Sánchez-Valle R, Lladó A, et al. Structural connectivity alterations along the Alzheimer's disease continuum: reproducibility across two independent samples and correlation with cerebrospinal fluid amyloid-β and Tau. J Alzheimer's Dis : JAD. 2018;61(4):1575–87. https://doi.org/10.3233/jad-170553 .
doi: 10.3233/jad-170553 pubmed: 29376852
Alm KH, Bakker A. Relationships between diffusion tensor imaging and cerebrospinal fluid metrics in early stages of the Alzheimer's disease continuum. J Alzheimer's Dis : JAD. 2019;70(4):965–81. https://doi.org/10.3233/jad-181210 .
doi: 10.3233/jad-181210 pubmed: 31306117
Yakushev I, Ripp I, Wang M, Savio A, Schutte M, Lizarraga A, et al. Mapping covariance in brain FDG uptake to structural connectivity. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05590-y .
Broser PJ, Groeschel S, Hauser TK, Lidzba K, Wilke M. Functional MRI-guided probabilistic tractography of cortico-cortical and cortico-subcortical language networks in children. Neuroimage. 2012;63(3):1561–70. https://doi.org/10.1016/j.neuroimage.2012.07.060 .
doi: 10.1016/j.neuroimage.2012.07.060 pubmed: 22884825
Sreedharan RM, Menon AC, James JS, Kesavadas C, Thomas SV. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children. Neuroradiology. 2015;57(3):291–7. https://doi.org/10.1007/s00234-014-1469-1 .
doi: 10.1007/s00234-014-1469-1 pubmed: 25467219
Zhu D, Li K, Guo L, Jiang X, Zhang T, Zhang D, et al. DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cereb Cortex. 2013;23(4):786–800. https://doi.org/10.1093/cercor/bhs072 .
doi: 10.1093/cercor/bhs072 pubmed: 22490548
Bowman FD, Zhang L, Derado G, Chen S. Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. Neuroimage. 2012;62(3):1769–79. https://doi.org/10.1016/j.neuroimage.2012.05.032 .
doi: 10.1016/j.neuroimage.2012.05.032 pubmed: 22634220
Ng B, Varoquaux G, Poline JB, Thirion B. A novel sparse graphical approach for multimodal brain connectivity inference. Med Image Comput Comput Assist Interv. 2012;15(Pt 1):707–14. https://doi.org/10.1007/978-3-642-33415-3_87 .
doi: 10.1007/978-3-642-33415-3_87 pubmed: 23285614
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44. https://doi.org/10.1212/wnl.34.7.939 .
doi: 10.1212/wnl.34.7.939 pubmed: 6610841
Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54. https://doi.org/10.1212/wnl.51.6.1546 .
doi: 10.1212/wnl.51.6.1546 pubmed: 9855500
Gonzalez-Escamilla G, Lange C, Teipel S, Buchert R, Grothe MJ. PETPVE12: an SPM toolbox for partial volume effects correction in brain PET - application to amyloid imaging with AV45-PET. Neuroimage. 2017;147:669–77. https://doi.org/10.1016/j.neuroimage.2016.12.077 .
doi: 10.1016/j.neuroimage.2016.12.077 pubmed: 28039094
Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47. https://doi.org/10.1002/hbm.10123 .
doi: 10.1002/hbm.10123 pubmed: 12874777 pmcid: 6871794
Wilkins B, Lee N, Gajawelli N, Law M, Leporé N. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values. Neuroimage. 2015;109:341–56. https://doi.org/10.1016/j.neuroimage.2014.12.060 .
doi: 10.1016/j.neuroimage.2014.12.060 pubmed: 25555998
Thirion B, Varoquaux G, Dohmatob E, Poline JB. Which fMRI clustering gives good brain parcellations? Front Neurosci. 2014;8:167. https://doi.org/10.3389/fnins.2014.00167 .
doi: 10.3389/fnins.2014.00167 pubmed: 25071425 pmcid: 4076743

Auteurs

Min Wang (M)

Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China.
Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany.

Michael Schutte (M)

The Bonn-Aachen International Center for Information Technology (b-it) and Institute of Computer Science II, University of Bonn, Bonn, Germany.

Timo Grimmer (T)

Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Aldana Lizarraga (A)

Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.

Thomas Schultz (T)

Department for Visual Computing, University of Bonn, Bonn, Germany.

Dennis M Hedderich (DM)

Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.

Janine Diehl-Schmid (J)

Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Axel Rominger (A)

Department of Nuclear Medicine, University of Bern, Bern, Switzerland.

Sybille Ziegler (S)

Department of Nuclear Medicine, Ludwig Maximilian University of Munich, Munich, Germany.

Nassir Navab (N)

Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany.

Zhuangzhi Yan (Z)

Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China.

Jiehui Jiang (J)

Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China. jiangjiehui@shu.edu.cn.

Igor Yakushev (I)

Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany. igor.yakushev@tum.de.

Kuangyu Shi (K)

Computer-Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany.
Department of Nuclear Medicine, University of Bern, Bern, Switzerland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH