Adjunctive therapy with the Tie2 agonist Vasculotide reduces pulmonary permeability in Streptococcus pneumoniae infected and mechanically ventilated mice.
Ampicillin
/ pharmacology
Angiopoietin-1
/ pharmacology
Animals
Anti-Bacterial Agents
/ pharmacology
Lung
/ pathology
Mice
Mice, Inbred C57BL
Peptide Fragments
Permeability
Pneumonia, Pneumococcal
/ drug therapy
Polyethylene Glycols
/ pharmacology
RNA, Messenger
/ pharmacology
Receptor, TIE-2
/ agonists
Respiration, Artificial
Streptococcus pneumoniae
Ventilator-Induced Lung Injury
/ prevention & control
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 09 2022
15 09 2022
Historique:
received:
08
12
2021
accepted:
31
08
2022
entrez:
15
9
2022
pubmed:
16
9
2022
medline:
20
9
2022
Statut:
epublish
Résumé
Community acquired pneumonia, mainly caused by Streptococcus pneumoniae (S.pn.), is a common cause of death worldwide. Despite adequate antibiotic therapy, pneumococcal pneumonia can induce pulmonary endothelial hyperpermeability leading to acute lung injury, which often requires mechanical ventilation (MV) causing ventilator-induced lung injury (VILI). Endothelial stabilization is mediated by angiopoietin-1 induced Tie2 activation. PEGylated (polyethylene glycol) Tie2-agonist Vasculotide (VT) mimics Angiopietin-1 effects. Recently, VT has been shown to reduce pulmonary hyperpermeability in murine pneumococcal pneumonia. The aim of this study was to determine whether VT reduces lung damage in S.pn. infected and mechanically ventilated mice. Pulmonary hyperpermeability, immune response and bacterial load were quantified in S.pn. infected mice treated with Ampicillin + /-VT and undergoing six hours of MV 24 h post infection. Histopathological lung changes, Tie2-expression and -phosphorylation were evaluated. VT did not alter immune response or bacterial burden, but interestingly combination treatment with ampicillin significantly reduced pulmonary hyperpermeability, histological lung damage and edema formation. Tie2-mRNA expression was reduced by S.pn. infection and/or MV but not restored by VT. Moreover, Tie2 phosphorylation was not affected by VT. These findings indicate that VT may be a promising adjunctive treatment option for prevention of VILI in severe pneumococcal pneumonia.
Identifiants
pubmed: 36109537
doi: 10.1038/s41598-022-19560-3
pii: 10.1038/s41598-022-19560-3
pmc: PMC9478100
doi:
Substances chimiques
Angiopoietin-1
0
Anti-Bacterial Agents
0
Peptide Fragments
0
RNA, Messenger
0
Polyethylene Glycols
3WJQ0SDW1A
Ampicillin
7C782967RD
Vasculotide
9P4ZVK7IDI
Receptor, TIE-2
EC 2.7.10.1
Tek protein, mouse
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15531Informations de copyright
© 2022. The Author(s).
Références
Am J Respir Crit Care Med. 2018 Jul 15;198(2):220-231
pubmed: 29447449
Cytokine Growth Factor Rev. 2003 Dec;14(6):523-35
pubmed: 14563354
N Engl J Med. 2004 Jul 22;351(4):327-36
pubmed: 15269312
PLoS Med. 2006 Mar;3(3):e46
pubmed: 16417407
Br J Anaesth. 2018 Nov;121(5):1041-1051
pubmed: 30336848
Sci Rep. 2016 Feb 25;6:22111
pubmed: 26911791
JAMA. 2012 Oct 24;308(16):1651-9
pubmed: 23093163
Crit Care. 2014 Apr 14;18(2):R73
pubmed: 24731244
Thorax. 2009 Dec;64(12):1062-9
pubmed: 19454409
Sci Rep. 2015 Jun 05;5:11030
pubmed: 26046800
Eur Respir Rev. 2015 Sep;24(137):516-24
pubmed: 26324814
N Engl J Med. 2000 May 4;342(18):1301-8
pubmed: 10793162
N Engl J Med. 2006 Jun 15;354(24):2564-75
pubmed: 16714767
Lancet. 1967 Aug 12;2(7511):319-23
pubmed: 4143721
Cell Transplant. 2018 Dec;27(12):1744-1752
pubmed: 30124060
Science. 1997 Jul 4;277(5322):55-60
pubmed: 9204896
Crit Care. 2009;13(1):R1
pubmed: 19152704
Am Rev Respir Dis. 1974 Nov;110(5):556-65
pubmed: 4611290
EMBO Mol Med. 2015 Apr 07;7(6):770-87
pubmed: 25851538
Cell. 1996 Dec 27;87(7):1171-80
pubmed: 8980224
Crit Care Med. 2006 Jul;34(7):1947-54
pubmed: 16715037
Crit Care. 2010;14(4):R143
pubmed: 20673352
Crit Care Med. 2011 Apr;39(4):702-10
pubmed: 21242795
Nat Med. 2006 Feb;12(2):235-9
pubmed: 16462802
Chest. 2015 Aug;148(2):523-532
pubmed: 25951315
Infect Immun. 2015 Dec;83(12):4617-29
pubmed: 26371127
Anesthesiology. 2009 Oct;111(4):826-35
pubmed: 19741487
Am J Respir Crit Care Med. 2015 Sep 1;192(5):597-604
pubmed: 26067221
Am J Respir Cell Mol Biol. 2014 Dec;51(6):730-7
pubmed: 24960575
Crit Care. 2018 Nov 1;22(1):287
pubmed: 30382866
Shock. 2009 Apr;31(4):348-53
pubmed: 18791490
Crit Care. 2010;14(3):R91
pubmed: 20492647
Crit Care. 2017 Nov 13;21(1):274
pubmed: 29132435
Crit Care. 2008;12(6):R147
pubmed: 19025590
Chest. 1999 Jul;116(1 Suppl):9S-15S
pubmed: 10424561
Crit Care. 2011;15(5):R261
pubmed: 22040774
Cell Tissue Res. 2014 Mar;355(3):657-73
pubmed: 24599335
World J Transplant. 2016 Sep 24;6(3):573-82
pubmed: 27683636
PLoS One. 2013 Aug 05;8(8):e70459
pubmed: 23940579
Anesthesiology. 2020 Apr;132(4):795-807
pubmed: 32101978
EMBO Rep. 2004 Mar;5(3):262-7
pubmed: 14978510
J Biol Chem. 2007 Aug 17;282(33):23910-8
pubmed: 17562701
Tissue Eng Part A. 2009 Jun;15(6):1269-80
pubmed: 18939935
Anesthesiology. 2018 Feb;128(2):361-374
pubmed: 28968277
Am J Physiol Lung Cell Mol Physiol. 2011 Jun;300(6):L851-62
pubmed: 21421750
F1000Res. 2016 Sep 14;5:2320
pubmed: 27703671
Dev Cell. 2008 Jan;14(1):25-36
pubmed: 18194650