Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review.
functional properties
high-pressure processing
nutritional properties
protein
structural alterations
Journal
Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
revised:
19
07
2022
received:
15
01
2022
accepted:
05
08
2022
pubmed:
21
9
2022
medline:
25
11
2022
entrez:
20
9
2022
Statut:
ppublish
Résumé
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Identifiants
pubmed: 36124402
doi: 10.1111/1541-4337.13033
doi:
Substances chimiques
Proteins
0
Types de publication
Review
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4640-4682Informations de copyright
© 2022 Institute of Food Technologists®.
Références
Aalaei, K., Khakimov, B., De Gobba, C., & Ahrné, L. (2021). Gastric digestion of milk proteins in adult and elderly: Effect of high-pressure processing. Foods, 10(4), 786. https://doi.org/10.3390/foods10040786
Acero-Lopez, A., Ullah, A., Offengenden, M., Jung, S., & Wu, J. (2012). Effect of high pressure treatment on ovotransferrin. Food Chemistry, 135(4), 2245-2252. https://doi.org/10.1016/j.foodchem.2012.07.071
Achouri, A., & Boye, J. I. (2013). Thermal processing, salt and high pressure treatment effects on molecular structure and antigenicity of sesame protein isolate. Food Research International, 53(1), 240-251. https://doi.org/10.1016/j.foodres.2013.04.016
Aganovic, K., Hertel, C., Vogel, R. F., Johne, R., Schlüter, O., Schwarzenbolz, U., Jäger, H., Holzhauser, T., Bergmair, J., Roth, A., Sevenich, R., Bandick, N., Kulling, S. E., Knorr, D., Engel, K.-H., & Heinz, V. (2021). Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3225-3266. https://doi.org/10.1111/1541-4337.12763
Ahmed, J., Al-Ruwaih, N., Mulla, M., & Rahman, M. H. (2018). Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT, 91, 191-197. https://doi.org/10.1016/j.lwt.2018.01.054
Ahmed, J., Mulla, M., Al-Ruwaih, N., & Arfat, Y. A. (2019). Effect of high-pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science, 1(1), e10. https://doi.org/10.1002/leg3.10
Akharume, F. U., Aluko, R. E., & Adedeji, A. A. (2021). Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 198-224. https://doi.org/10.1111/1541-4337.12688
Al-Ruwaih, N., Ahmed, J., Mulla, M. F., & Arfat, Y. A. (2019). High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT, 100, 231-236. https://doi.org/10.1016/j.lwt.2018.10.074
Alizadeh-Pasdar, N., & Li-Chan, E. C. Y. (2000). Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. Journal of Agricultural and Food Chemistry, 48(2), 328-334. https://doi.org/10.1021/jf990393p
Alvarez, P. A., Ramaswamy, H. S., & Ismail, A. A. (2008). High pressure gelation of soy proteins: Effect of concentration, pH and additives. Journal of Food Engineering, 88(3), 331-340. https://doi.org/10.1016/j.jfoodeng.2008.02.018
Angioloni, A., & Collar, C. (2012). Effects of pressure treatment of hydrated oat, finger millet and sorghum flours on the quality and nutritional properties of composite wheat breads. Journal of Cereal Science, 56(3), 713-719. https://doi.org/10.1016/j.jcs.2012.08.001
Añón, M. C., de Lamballerie, M., & Speroni, F. (2012). Effect of high pressure on solubility and aggregability of calcium-added soybean proteins. Innovative Food Science & Emerging Technologies, 16, 155-162. https://doi.org/10.1016/j.ifset.2012.05.006
Aryee, A. N. A., Agyei, D., & Udenigwe, C. C. (2018). 2-Impact of processing on the chemistry and functionality of food proteins. In R. Y. Yada (Ed.), Proteins in food processing (2nd ed., pp. 27-45). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100722-8.00003-6
Ascone, I., Savino, C., Kahn, R., & Fourme, R. (2010). Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa. Acta Crystallographica Section D, 66(6), 654-663. https://doi.org/10.1107/S0907444910012321
Baier, A. K., & Knorr, D. (2015). Influence of high isostatic pressure on structural and functional characteristics of potato protein. Food Research International, 77, 753-761. https://doi.org/10.1016/j.foodres.2015.05.053
Baier, S. K., & McClements, D. J. (2005). Influence of cosolvent systems on the gelation mechanism of globular protein: Thermodynamic, kinetic, and structural aspects of globular protein gelation. Comprehensive Reviews in Food Science and Food Safety, 4(3), 43-54. https://doi.org/10.1111/j.1541-4337.2005.tb00072.x
Balasubramaniam, V. M., Martínez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure-based technologies in the food industry. Annual Review of Food Science and Technology, 6(1), 435-462. https://doi.org/10.1146/annurev-food-022814-015539
Balny, C., Mozhaev, V. V., & Lange, R. (1997). Hydrostatic pressure and proteins: Basic concepts and new data. Comparative Biochemistry and Physiology Part A: Physiology, 116(4), 299-304. https://doi.org/10.1016/S0300-9629(96)00355-6
Banerjee, S., & Bhattacharya, S. (2012). Food gels: Gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52(4), 334-346. https://doi.org/10.1080/10408398.2010.500234
Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725-742. https://doi.org/10.1016/j.foodres.2015.05.015
Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins. Chemical Reviews, 116(13), 7673-7697. https://doi.org/10.1021/acs.chemrev.5b00664
Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2011). An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Engineering Reviews, 3(1), 44-61. https://doi.org/10.1007/s12393-010-9030-4
Bhat, Z. F., Morton, J. D., Bekhit, A. E.-D. A., Kumar, S., & Bhat, H. F. (2021a). Effect of processing technologies on the digestibility of egg proteins. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4703-4738. https://doi.org/10.1111/1541-4337.12805
Bhat, Z. F., Morton, J. D., Bekhit, A. E.-D. A., Kumar, S., & Bhat, H. F. (2021b). Emerging processing technologies for improved digestibility of muscle proteins. Trends in Food Science & Technology, 110, 226-239. https://doi.org/10.1016/j.tifs.2021.02.010
Bolumar, T., Orlien, V., Sikes, A., Aganovic, K., Bak, K. H., Guyon, C., Stübler, A.-S., de Lamballerie, M., Hertel, C., & Brüggemann, D. A. (2021). High-pressure processing of meat: Molecular impacts and industrial applications. Comprehensive Reviews in Food Science and Food Safety, 20(1), 332-368. https://doi.org/10.1111/1541-4337.12670
Borad, S. G., & Singh, A. K. (2018). Colostrum immunoglobulins: Processing, preservation and application aspects. International Dairy Journal, 85, 201-210. https://doi.org/10.1016/j.idairyj.2018.05.016
Boye, J., Wijesinha-Bettoni, R., & Burlingame, B. (2012). Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. British Journal of Nutrition, 108(S2), S183-S211. https://doi.org/10.1017/S0007114512002309
Bridgman, P. W. (1914). The coagulation of albumen by pressure. Journal of Biological Chemistry, 19(4), 511-512. https://doi.org/10.1016/S0021-9258(18)88287-4
Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances, 23(1), 87-92. https://doi.org/10.1016/j.biotechadv.2004.09.002
Cando, D., Herranz, B., Borderías, A. J., & Moreno, H. M. (2016). Different additives to enhance the gelation of surimi gel with reduced sodium content. Food Chemistry, 196, 791-799. https://doi.org/10.1016/j.foodchem.2015.10.022
Cao, B. Y., Fang, L., Liu, C. L., Min, W. H., & Liu, J. S. (2018). Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts. Food Science and Technology International, 24(1), 53-66. https://doi.org/10.1177/1082013217726883
Cao, Y., Xia, T., Zhou, G., & Xu, X. (2012). The mechanism of high pressure-induced gels of rabbit myosin. Innovative Food Science & Emerging Technologies, 16, 41-46. https://doi.org/10.1016/j.ifset.2012.04.005
Carullo, D., Barbosa-Cánovas, G. V., & Ferrari, G. (2021). Changes of structural and techno-functional properties of high hydrostatic pressure (HHP) treated whey protein isolate over refrigerated storage. LWT, 137, 110436. https://doi.org/10.1016/j.lwt.2020.110436
Chao, D., Jung, S., & Aluko, R. E. (2018). Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science & Emerging Technologies, 45, 179-185. https://doi.org/10.1016/j.ifset.2017.10.014
Chen, C. R., & Makhatadze, G. I. (2017). Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nature Communications, 8(1), 14561. https://doi.org/10.1038/ncomms14561
Chen, J., Mu, T., Zhang, M., & Goffin, D. (2019). Effect of high hydrostatic pressure on the structure, physicochemical and functional properties of protein isolates from cumin (Cuminum cyminum) seeds. International Journal of Food Science & Technology, 54(3), 752-761. https://doi.org/10.1111/ijfs.13990
Chen, X., Tume, R. K., Xiong, Y. L., Xu, X. L., Zhou, G. H., Chen, C. G., & Nishiumi, T. (2018). Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition, 58(17), 2981-3003. https://doi.org/10.1080/10408398.2017.1347557
Chicón, R., Belloque, J., Alonso, E., & López-Fandiño, R. (2008). Immunoreactivity and digestibility of high-pressure-treated whey proteins. International Dairy Journal, 18(4), 367-376. https://doi.org/10.1016/j.idairyj.2007.11.010
Clariana, M., Guerrero, L., Sárraga, C., & Garcia-Regueiro, J. A. (2012). Effects of high pressure application (400 and 900 MPa) and refrigerated storage time on the oxidative stability of sliced skin vacuum packed dry-cured ham. Meat Science, 90(2), 323-329. https://doi.org/10.1016/j.meatsci.2011.07.018
Condés, M. C., Añón, M. C., & Mauri, A. N. (2015). Amaranth protein films prepared with high-pressure treated proteins. Journal of Food Engineering, 166, 38-44. https://doi.org/10.1016/j.jfoodeng.2015.05.005
Condés, M. C., Speroni, F., Mauri, A., & Añón, M. C. (2012). Physicochemical and structural properties of amaranth protein isolates treated with high pressure. Innovative Food Science & Emerging Technologies, 14, 11-17. https://doi.org/10.1016/j.ifset.2011.12.006
Contador, R., Delgado-Adámez, J., Delgado, F. J., Cava, R., & Ramírez, R. (2013). Effect of thermal pasteurisation or high pressure processing on immunoglobulin and leukocyte contents of human milk. International Dairy Journal, 32(1), 1-5. https://doi.org/10.1016/j.idairyj.2013.03.006
Correia, I., Nunes, A., Saraiva, J. A., Barros, A. S., & Delgadillo, I. (2011). High pressure treatments largely avoid/revert decrease of cooked sorghum protein digestibility when applied before/after cooking. LWT-Food Science and Technology, 44(4), 1245-1249. https://doi.org/10.1016/j.lwt.2010.10.021
De Maria, S., Ferrari, G., & Maresca, P. (2015). Rheological characterization and modelling of high pressure processed bovine serum albumin. Journal of Food Engineering, 153, 39-44. https://doi.org/10.1016/j.jfoodeng.2014.12.013
De Maria, S., Ferrari, G., & Maresca, P. (2016). Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innovative Food Science & Emerging Technologies, 33, 67-75. https://doi.org/10.1016/j.ifset.2015.11.025
Delgado, F. J., Contador, R., Álvarez-Barrientos, A., Cava, R., Delgado-Adámez, J., & Ramírez, R. (2013). Effect of high pressure thermal processing on some essential nutrients and immunological components present in breast milk. Innovative Food Science & Emerging Technologies, 19, 50-56. https://doi.org/10.1016/j.ifset.2013.05.006
Durowoju, I. B., Bhandal, K. S., Hu, J., Carpick, B., & Kirkitadze, M. (2017). Differential scanning calorimetry-A method for assessing the thermal stability and conformation of protein antigen. JoVE, 4(121), e55262. https://doi.org/10.3791/55262
Eisenmenger, M. J., & Reyes-De-Corcuera, J. I. (2009). High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology, 45(5), 331-347. https://doi.org/10.1016/j.enzmictec.2009.08.001
Elahi, R., & Mu, T. (2017). High hydrostatic pressure (HHP)-induced structural modification of patatin and its antioxidant activities. Molecules (Basel, Switzerland), 22(3). https://doi.org/10.3390/molecules22030438
Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441. https://doi.org/10.1080/10408390701425615
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259-279. https://doi.org/10.1016/j.meatsci.2011.04.025
Foegeding, E. A., & Davis, J. P. (2011). Food protein functionality: A comprehensive approach. Food Hydrocolloids, 25(8), 1853-1864. https://doi.org/10.1016/j.foodhyd.2011.05.008
Franco, I., Pérez, M. D., Castillo, E., Calvo, M., & Sánchez, L. (2013). Effect of high pressure on the structure and antibacterial activity of bovine lactoferrin treated in different media. Journal of Dairy Research, 80(3), 283-290. https://doi.org/10.1017/S0022029913000150
Gekko, K. (2015). Volume and compressibility of proteins. In K. Akasaka & H. Matsuki (Eds.), High pressure bioscience: Basic concepts, applications and frontiers (pp. 75-108). Springer. https://doi.org/10.1007/978-94-017-9918-8_5
Gharibzahedi, S. M. T., & Smith, B. (2021). Effects of high hydrostatic pressure on the quality and functionality of protein isolates, concentrates, and hydrolysates derived from pulse legumes: A review. Trends in Food Science & Technology, 107, 466-479. https://doi.org/10.1016/j.tifs.2020.11.016
Gravel, A., & Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies, 59, 102272. https://doi.org/10.1016/j.ifset.2019.102272
Guyon, C., Le Vessel, V., Meynier, A., & de Lamballerie, M. (2018). Modifications of protein-related compounds of beef minced meat treated by high pressure. Meat Science, 142, 32-37. https://doi.org/10.1016/j.meatsci.2018.03.019
Guyon, C., Meynier, A., & de Lamballerie, M. (2016). Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends in Food Science & Technology, 50, 131-143. https://doi.org/10.1016/j.tifs.2016.01.026
Hall, A. E., & Moraru, C. I. (2021). Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment. LWT, 152, 112349. https://doi.org/10.1016/j.lwt.2021.112349
Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology, 18(2), 163-169. https://doi.org/10.1016/j.copbio.2007.01.013
He, R., He, H.-Y., Chao, D., Ju, X., & Aluko, R. (2014a). Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food and Bioprocess Technology, 7(5), 1344-1353. https://doi.org/10.1007/s11947-013-1139-z
He, X., Liu, H., Liu, L., Zhao, G., Wang, Q., & Chen, Q. (2014b). Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocolloids, 36, 123-129. https://doi.org/10.1016/j.foodhyd.2013.08.031
He, X., Mao, L., Gao, Y., & Yuan, F. (2016). Effects of high pressure processing on the structural and functional properties of bovine lactoferrin. Innovative Food Science & Emerging Technologies, 38, 221-230. https://doi.org/10.1016/j.ifset.2016.10.014
Hettiarachchy, N. S., Sato, K., Marshall, M. R., & Kannan, A. (2012). Food proteins and peptides: Chemistry, functionality, interactions, and commercialization (1st ed.). CRC Press. https://doi.org/10.1201/b11768
Higuero, N., Ramírez, M. R., Vidal-Aragón, M. d. C., & Cava, R. (2022). Influence of high-pressure processing and varying concentrations of curing salts on the color, heme pigments and oxidation of lipids and proteins of Iberian dry-cured loins during refrigerated storage. LWT, 160, 113251. https://doi.org/10.1016/j.lwt.2022.113251
Hou, Z., Zhang, Y., Qin, X., Zhao, L., Wang, Y., & Liao, X. (2018). High pressure processing for sea buckthorn juice with higher superoxide dismutase activity. Journal of Food & Nutrition Research, 57(3), .
Hou, Z., Zhao, L., Wang, Y., & Liao, X. (2019). Effects of high pressure on activities and properties of superoxide dismutase from chestnut rose. Food Chemistry, 294, 557-564. https://doi.org/10.1016/j.foodchem.2019.05.080
Hu, G., Zheng, Y., Liu, Z., Deng, Y., & Zhao, Y. (2016). Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chemistry, 204, 46-55. https://doi.org/10.1016/j.foodchem.2016.02.113
Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860-1866. https://doi.org/10.1016/j.foodchem.2016.10.088
Imamura, H., & Kato, M. (2009). Effect of pressure on helix-coil transition of an alanine-based peptide: An FTIR study. Proteins: Structure, Function, and Bioinformatics, 75(4), 911-918. https://doi.org/10.1002/prot.22302
Iskandar, M. M., Lands, L. C., Sabally, K., Azadi, B., Meehan, B., Mawji, N., Skinner, C. D., & Kubow, S. (2015). High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods, 4(2), 184-207. https://doi.org/10.3390/foods4020184
Jin, Y., Deng, Y., Qian, B., Zhang, Y., Liu, Z., & Zhao, Y. (2015). Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure. Food and Chemical Toxicology, 76, 86-93. https://doi.org/10.1016/j.fct.2014.12.002
Johnson, C. M. (2013). Differential scanning calorimetry as a tool for protein folding and stability. Archives of Biochemistry and Biophysics, 531(1), 100-109. https://doi.org/10.1016/j.abb.2012.09.008
Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199. https://doi.org/10.3390/foods8060199
Katzav, H., Chirug, L., Okun, Z., Davidovich-Pinhas, M., & Shpigelman, A. (2020). Comparison of thermal and high-pressure gelation of potato protein isolates. Foods, 9(8), 1041. https://doi.org/10.3390/foods9081041
Khan, N. M., Mu, T.-H., Zhang, M., & Chen, J.-W. (2013). Effects of high hydrostatic pressure on the physicochemical and emulsifying properties of sweet potato protein. International Journal of Food Science & Technology, 48(6), 1260-1268. https://doi.org/10.1111/ijfs.12085
Khan, N. M., Mu, T.-H., Ali, F., Arogundade, L. A., Khan, Z. U., Zhang, M., Ahmad, S., & Sun, H.-N. (2015a). Effects of high hydrostatic pressure on emulsifying properties of sweet potato protein in model protein-hydrocolloids system. Food Chemistry, 169, 448-454. https://doi.org/10.1016/j.foodchem.2014.08.013
Khan, N. M., Mu, T.-H., Sun, H.-N., Zhang, M., & Chen, J.-W. (2015b). Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein. High Pressure Research, 35(2), 189-202. https://doi.org/10.1080/08957959.2015.1005013
Khan, N. M., Mu, T.-H., Zhang, M., & Arogundade, L. A. (2014). The effects of pH and high hydrostatic pressure on the physicochemical properties of a sweet potato protein emulsion. Food Hydrocolloids, 35, 209-216. https://doi.org/10.1016/j.foodhyd.2013.05.011
Kieserling, H., Giefer, P., Uttinger, M. J., Lautenbach, V., Nguyen, T., Sevenich, R., Lübbert, C., Rauh, C., Peukert, W., & Fritsching, U. (2021). Structure and adsorption behavior of high hydrostatic pressure-treated β-lactoglobulin. Journal of Colloid and Interface Science, 596, 173-183. https://doi.org/10.1016/j.jcis.2021.03.051
Kitts, D. D., & Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9(16), 1309-1323. https://doi.org/10.2174/1381612033454883
Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. In M. P. Doyle & T. R. Klaenhammer (Eds.), Annual review of food science and technology, (Vol. 2, pp. 203-235). https://doi.org/10.1146/annurev.food.102308.124129
Kurpiewska, K., Biela, A., Loch, J. I., Lipowska, J., Siuda, M., & Lewinski, K. (2019). Towards understanding the effect of high pressure on food protein allergenicity: beta-lactoglobulin structural studies. Food Chemistry, 270, 315-321. https://doi.org/10.1016/j.foodchem.2018.07.104
Laguna, L., Picouet, P., Guàrdia, M. D., Renard, C. M. G. C., & Sarkar, A. (2017). In vitro gastrointestinal digestion of pea protein isolate as a function of pH, food matrices, autoclaving, high-pressure and re-heat treatments. LWT, 84, 511-519. https://doi.org/10.1016/j.lwt.2017.06.021
Lakowicz, J. R. (2006). Protein fluorescence. In J. R. Lakowicz (Ed.), Principles of fluorescence spectroscopy (pp. 529-575). Springer US. https://doi.org/10.1007/978-0-387-46312-4_16
Lam, R. S. H., & Nickerson, M. T. (2013). Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry, 141(2), 975-984. https://doi.org/10.1016/j.foodchem.2013.04.038
Le Vay, K., Carter, B. M., Watkins, D. W., Tang, T. -Y. D., Ting, V. P., Cölfen, H., Rambo, R. P., Smith, A. J., Anderson, J. L. R., & Perriman, A. W. (2020). Controlling protein nanocage assembly with hydrostatic pressure. Journal of the American Chemical Society, 142(49), 20640-20650. https://doi.org/10.1021/jacs.0c07285
Li, G., Chen, Y., Xuan, S., Lv, M., Zhang, J., Lou, Q., Jia, R., & Yang, W. (2019a). Effects of ultra-high pressure on the biochemical properties and secondary structure of myofibrillar protein from Oratosquilla oratoria muscle. Journal of Food Process Engineering, 42(6), e13231. https://doi.org/10.1111/jfpe.13231
Li, H., Zhu, K., Zhou, H., & Peng, W. (2011). Effects of high hydrostatic pressure on some functional and nutritional properties of soy protein isolate for infant formula. Journal of Agricultural and Food Chemistry, 59(22), 12028-12036. https://doi.org/10.1021/jf203390e
Li, H., Zhu, K., Zhou, H., & Peng, W. (2012). Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chemistry, 132(2), 808-814. https://doi.org/10.1016/j.foodchem.2011.11.040
Li, J., Wang, B., Fan, J., Zhong, X., Huang, G., Yan, L., & Ren, X. (2019b). Foaming, emulsifying properties and surface hydrophobicity of soy proteins isolate as affected by peracetic acid oxidation. International Journal of Food Properties, 22(1), 689-703. https://doi.org/10.1080/10942912.2019.1602540
Li, R., Wang, Y., Ling, J., & Liao, X. (2017). Effects of high pressure processing on activity and structure of soluble acid invertase in mango pulp, crude extract, purified form and model systems. Food Chemistry, 231, 96-104. https://doi.org/10.1016/j.foodchem.2017.03.108
Li, S., Zhang, H. Q., Balasubramaniam, V. M., Lee, Y., Bomser, J. A., Schwartz, S. J., & Dunne, C. P. (2006). Comparison of effects of high-pressure processing and heat treatment on immunoactivity of bovine milk immunoglobulin G in enriched soymilk under equivalent microbial inactivation levels. Journal of Agricultural and Food Chemistry, 54(3), 739-746. https://doi.org/10.1021/jf0516181
Li, X., Mao, L., He, X., Ma, P., Gao, Y., & Yuan, F. (2018a). Characterization of β-lactoglobulin gels induced by high pressure processing. Innovative Food Science & Emerging Technologies, 47, 335-345. https://doi.org/10.1016/j.ifset.2018.03.022
Li, Z., Liu, H., Ma, R., Tang, B., Pan, D., Peng, Y., Ling, X., Wang, Y., Wu, X., Che, L., & He, N. (2018b). Changes to the tropomyosin structure alter the angiotensin-converting enzyme inhibitory activity and texture profiles of eel balls under high hydrostatic pressure. Food & Function, 9(12), 6535-6543. https://doi.org/10.1039/C8FO01495G
Liang, Y., Guo, B., Zhou, A., Xiao, S., & Liu, X. (2017). Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp (Aristichthys nobilis) surimi gels. Journal of Food Processing and Preservation, 41(5), e13155. https://doi.org/10.1111/jfpp.13155
Lin, T., & Fernández-Fraguas, C. (2020). Effect of thermal and high-pressure processing on the thermo-rheological and functional properties of common bean (Phaseolus vulgaris L.) flours. LWT, 127, 109325. https://doi.org/10.1016/j.lwt.2020.109325
Linsberger-Martin, G., Weiglhofer, K., Thi Phuong, T. P., & Berghofer, E. (2013). High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT-Food Science and Technology, 51(1), 331-336. https://doi.org/10.1016/j.lwt.2012.11.008
Loveday, S. M. (2019). Food proteins: Technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annual Review of Food Science and Technology, 10(1), 311-339. https://doi.org/10.1146/annurev-food-032818-121128
Luong, T. Q., Kapoor, S., & Winter, R. (2015). Pressure-A gateway to fundamental insights into protein solvation, dynamics, and function. Chemphyschem, 16(17), 3555-3571. https://doi.org/10.1002/cphc.201500669
Ma, R., Liu, H., Li, Y., Atem, B. J. A., Ling, X., He, N., Che, L., Wu, X., Wang, Y., & Lu, Y. (2021). Effects of high hydrostatic pressure treatment: Characterization of eel (Anguilla japonica) surimi, structure, and angiotensin-converting enzyme inhibitory activity of myofibrillar protein. Food and Bioprocess Technology, https://doi.org/10.1007/s11947-021-02658-3
Maeno, A., & Akasaka, K. (2015). High-pressure fluorescence spectroscopy. In K. Akasaka & H. Matsuki (Eds.), High pressure bioscience: Basic concepts, applications and frontiers (pp. 687-705). Springer. https://doi.org/10.1007/978-94-017-9918-8_32
Malinowska-Pańczyk, E. (2020). Can high hydrostatic pressure processing be the best way to preserve human milk? Trends in Food Science & Technology, 101, 133-138. https://doi.org/10.1016/j.tifs.2020.05.009
Maltais, A., Remondetto, G. E., Gonzalez, R., & Subirade, M. (2005). Formation of soy protein isolate cold-set gels: Protein and salt effects. Journal of Food Science, 70(1), C67-C73. https://doi.org/10.1111/j.1365-2621.2005.tb09023.x
Manassero, C. A., David-Briand, E., Vaudagna, S. R., Anton, M., & Speroni, F. (2018). Calcium addition, pH, and high hydrostatic pressure effects on soybean protein isolates-Part 1: Colloidal stability improvement. Food and Bioprocess Technology, 11(6), 1125-1138. https://doi.org/10.1007/s11947-018-2084-7
Manassero, C. A., Vaudagna, S. R., Añón, M. C., & Speroni, F. (2015). High hydrostatic pressure improves protein solubility and dispersion stability of mineral-added soybean protein isolate. Food Hydrocolloids, 43, 629-635. https://doi.org/10.1016/j.foodhyd.2014.07.020
Manassero, C. A., Vaudagna, S. R., Sancho, A. M., Añón, M. C., & Speroni, F. (2016). Combined high hydrostatic pressure and thermal treatments fully inactivate trypsin inhibitors and lipoxygenase and improve protein solubility and physical stability of calcium-added soymilk. Innovative Food Science & Emerging Technologies, 35, 86-95. https://doi.org/10.1016/j.ifset.2016.04.005
Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., & Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80, 187-198. https://doi.org/10.1016/j.tifs.2018.08.013
Masschalck, B., & Michiels, C. W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology, 29(3), 191-214. https://doi.org/10.1080/713610448
Masschalck, B., Van Houdt, R., & Michiels, C. W. (2001). High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. International Journal of Food Microbiology, 64(3), 325-332. https://doi.org/10.1016/S0168-1605(00)00485-2
Mayayo, C., Montserrat, M., Ramos, S. J., Martínez-Lorenzo, M. J., Calvo, M., Sánchez, L., & Pérez, M. D. (2014). Kinetic parameters for high-pressure-induced denaturation of lactoferrin in human milk. International Dairy Journal, 39(2), 246-252. https://doi.org/10.1016/j.idairyj.2014.07.001
Mayayo, C., Montserrat, M., Ramos, S. J., Martínez-Lorenzo, M. J., Calvo, M., Sánchez, L., & Pérez, M. D. (2016). Effect of high pressure and heat treatments on IgA immunoreactivity and lysozyme activity in human milk. European Food Research and Technology, 242(6), 891-898. https://doi.org/10.1007/s00217-015-2595-7
Mazri, C., Sánchez, L., Ramos, S. J., Calvo, M., & Pérez, M. D. (2012). Effect of high-pressure treatment on denaturation of bovine lactoferrin and lactoperoxidase. Journal of Dairy Science, 95(2), 549-557. https://doi.org/10.3168/jds.2011-4665
Meersman, F., & McMillan, P. F. (2014). High hydrostatic pressure: A probing tool and a necessary parameter in biophysical chemistry. Chemical Communications, 50(7), 766-775. https://doi.org/10.1039/C3CC45844J
Meng, X., Bai, Y., Gao, J., Li, X., & Chen, H. (2017). Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin. Food Chemistry, 219, 290-296. https://doi.org/10.1016/j.foodchem.2016.09.153
Mirmoghtadaie, L., Shojaee Aliabadi, S., & Hosseini, S. M. (2016). Recent approaches in physical modification of protein functionality. Food Chemistry, 199, 619-627. https://doi.org/10.1016/j.foodchem.2015.12.067
Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International, 39(9), 945-963. https://doi.org/10.1016/j.foodres.2006.07.002
Neumaier, S., Büttner, M., Bachmann, A., & Kiefhaber, T. (2013). Transition state and ground state properties of the helix-coil transition in peptides deduced from high-pressure studies. Proceedings of the National Academy of Sciences, 110(52), 20988-20993. https://doi.org/10.1073/pnas.1317973110
Nicolai, T. (2019). Gelation of food protein-protein mixtures. Advances in Colloid and Interface Science, 270, 147-164. https://doi.org/10.1016/j.cis.2019.06.006
Oey, I. (2016). Effects of high pressure on enzymes. In V. M. Balasubramaniam, G. V. Barbosa-Cánovas, & H. L. M. Lelieveld (Eds.), High pressure processing of food: Principles, technology and applications (pp. 391-431). Springer. https://doi.org/10.1007/978-1-4939-3234-4_19
Permanyer, M., Castellote, C., Ramírez-Santana, C., Audí, C., Pérez-Cano, F. J., Castell, M., López-Sabater, M. C., & Franch, À. (2010). Maintenance of breast milk immunoglobulin A after high-pressure processing. Journal of Dairy Science, 93(3), 877-883. https://doi.org/10.3168/jds.2009-2643
Perreault, V., Hénaux, L., Bazinet, L., & Doyen, A. (2017). Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chemistry, 221, 1805-1812. https://doi.org/10.1016/j.foodchem.2016.10.100
Peyrano, F., de Lamballerie, M., Avanza, M. V., & Speroni, F. (2019). Rheological characterization of the thermal gelation of cowpea protein isolates: Effect of pretreatments with high hydrostatic pressure or calcium addition. LWT, 115, 108472. https://doi.org/10.1016/j.lwt.2019.108472
Peyrano, F., de Lamballerie, M., Avanza, M. V., & Speroni, F. (2021). Gelation of cowpea proteins induced by high hydrostatic pressure. Food Hydrocolloids, 111, 106191. https://doi.org/10.1016/j.foodhyd.2020.106191
Peyrano, F., Speroni, F., & Avanza, M. V. (2016). Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 33, 38-46. https://doi.org/10.1016/j.ifset.2015.10.014
Piccini, L., Scilingo, A., & Speroni, F. (2019). Thermal versus high hydrostatic pressure treatments on calcium-added soybean proteins. protein solubility, colloidal stability and cold-set gelation. Food Biophysics, 14(1), 69-79. https://doi.org/10.1007/s11483-018-9558-z
Poon, S., Clarke, A. E., & Schultz, C. J. (2001). Effect of denaturants on the emulsifying activity of proteins. Journal of Agricultural and Food Chemistry, 49(1), 281-286. https://doi.org/10.1021/jf000179x
Qin, Z., Guo, X., Lin, Y., Chen, J., Liao, X., Hu, X., & Wu, J. (2013). Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate. Journal of the Science of Food and Agriculture, 93(5), 1105-1111. https://doi.org/10.1002/jsfa.5857
Qiu, C., Xia, W., & Jiang, Q. (2014). Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. European Food Research and Technology, 238(5), 753-761. https://doi.org/10.1007/s00217-014-2155-6
Queiros, R. P., Saraiva, J. A., & da Silva, J. A. L. (2018). Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 58(9), 1538-1556. https://doi.org/10.1080/10408398.2016.1271770
Rakotondramavo, A., Ribourg, L., Meynier, A., Guyon, C., de Lamballerie, M., & Pottier, L. (2019). Monitoring oxidation during the storage of pressure-treated cooked ham and impact on technological attributes. Heliyon, 5(8), e02285. https://doi.org/10.1016/j.heliyon.2019.e02285
Rao, M. A. (2014). Rheological behavior of food gels. In (M. A. Rao (Ed.), Rheology of fluid, semisolid, and solid foods: Principles and applications (pp. 331-390). Springer US. https://doi.org/10.1007/978-1-4614-9230-6_6
Roche, J., Caro, J. A., Norberto, D. R., Barthe, P., Roumestand, C., Schlessman, J. L., Garcia, A. E., García-Moreno, E. B., & Royer, C. A. (2012). Cavities determine the pressure unfolding of proteins. Proceedings of the National Academy of Sciences, 109(18), 6945-6950. https://doi.org/10.1073/pnas.1200915109
Roche, J., & Royer, C. A. (2018). Lessons from pressure denaturation of proteins. Journal of the Royal Society Interface, 15(147). https://doi.org/10.1098/rsif.2018.0244
Rodiles-López, J. O., Arroyo-Maya, I. J., Jaramillo-Flores, M. E., Gutiérrez-López, G. F., Hernández-Arana, A., Barbosa-Cánovas, G. V., Niranjan, K., & Hernández-Sánchez, H. (2010). Effects of high hydrostatic pressure on the structure of bovine α-lactalbumin. Journal of Dairy Science, 93(4), 1420-1428. https://doi.org/10.3168/jds.2009-2786
Rodiles-López, J. O., Jaramillo-Flores, M. E., Gutiérrez-López, G. F., Hernández-Arana, A., Fosado-Quiroz, R. E., Barbosa-Cánovas, G. V., & Hernández-Sánchez, H. (2008). Effect of high hydrostatic pressure on bovine α-lactalbumin functional properties. Journal of Food Engineering, 87(3), 363-370. https://doi.org/10.1016/j.jfoodeng.2007.12.014
Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., & Reiter, R. J. (2004). Regulation of antioxidant enzymes: A significant role for melatonin. Journal of Pineal Research, 36(1), 1-9. https://doi.org/10.1046/j.1600-079X.2003.00092.x
Royer, C. A. (2015). Why and how does pressure unfold proteins? In (K. Akasaka & H. Matsuki (Eds.), High pressure bioscience: Basic concepts, applications and frontiers (pp. 59-71). Springer. https://doi.org/10.1007/978-94-017-9918-8_4
Sarkar, A., & Singh, H. (2016). Emulsions and foams stabilised by milk proteins. In P. L. H. McSweeney & J. A. O'Mahony (Eds.), Advanced dairy chemistry: Volume 1B: Proteins: Applied aspects (pp. 133-153). Springer. https://doi.org/10.1007/978-1-4939-2800-2_5
Sathe, S. K., Zaffran, V. D., Gupta, S., & Li, T. (2018). Protein solubilization. Journal of the American Oil Chemists' Society, 95(8), 883-901. https://doi.org/10.1002/aocs.12058
Sharif, H. R., Williams, P. A., Sharif, M. K., Abbas, S., Majeed, H., Masamba, K. G., Safdar, W., & Zhong, F. (2018). Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants-A review. Food Hydrocolloids, 76, 2-16. https://doi.org/10.1016/j.foodhyd.2017.01.002
Sharma, G. S., Bhattacharya, R., & Singh, L. R. (2019). Chapter 11-Protein covalent modification by homocysteine: Consequences and clinical implications. In T. A. Dar & L. R. Singh (Eds.), Protein modificomics (pp. 281-311). Academic Press. https://doi.org/10.1016/B978-0-12-811913-6.00011-4
Shi, L., Xiong, G., Yin, T., Ding, A., Li, X., Wu, W., Qiao, Y., Liao, L., Jiao, C., & Wang, L. (2020). Effects of ultra-high pressure treatment on the protein denaturation and water properties of red swamp crayfish (Procambarus clarkia). LWT, 133, 110124. https://doi.org/10.1016/j.lwt.2020.110124
Silva, J. L., Oliveira, A. C., Vieira, T., de Oliveira, G. A. P., Suarez, M. C., & Foguel, D. (2014). High-pressure chemical biology and biotechnology. Chemical Reviews, 114(14), 7239-7267. https://doi.org/10.1021/cr400204z
Sim, S. Y. J., Karwe, M. V., & Moraru, C. I. (2019). High pressure structuring of pea protein concentrates. Journal of Food Process Engineering, 42(7), e13261. https://doi.org/10.1111/jfpe.13261
Singh, A., & Ramaswamy, H. S. (2015). High pressure modification of egg components: Exploration of calorimetric, structural and functional characteristics. Innovative Food Science & Emerging Technologies, 32, 45-55. https://doi.org/10.1016/j.ifset.2015.09.010
Smeller, L. (2002). Pressure-temperature phase diagrams of biomolecules. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1595(1), 11-29. https://doi.org/10.1016/S0167-4838(01)00332-6
Somkuti, J., & Smeller, L. (2013). High pressure effects on allergen food proteins. Biophysical Chemistry, 183, 19-29. https://doi.org/10.1016/j.bpc.2013.06.009
Sousa, S. G., Delgadillo, I., & Saraiva, J. A. (2014). Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chemistry, 151, 79-85. https://doi.org/10.1016/j.foodchem.2013.11.024
Speroni, F., & Añón, M. C. (2013). Cold-set gelation of high pressure-treated soybean proteins. Food Hydrocolloids, 33(1), 85-91. https://doi.org/10.1016/j.foodhyd.2013.03.001
Speroni, F., Jung, S., & De Lamballerie, M. (2010). Effects of calcium and pressure treatment on thermal gelation of soybean protein. Journal of Food Science, 75(1), E30-E38. https://doi.org/10.1111/j.1750-3841.2009.01390.x
Stübler, A.-S., Lesmes, U., Heinz, V., Rauh, C., Shpigelman, A., & Aganovic, K. (2019). Digestibility, antioxidative activity and stability of plant protein-rich products after processing and formulation with polyphenol-rich juices: kale and kale-strawberry as a model. European Food Research and Technology, 245(11), 2499-2514. https://doi.org/10.1007/s00217-019-03362-5
Stübler, A.-S., Lesmes, U., Juadjur, A., Heinz, V., Rauh, C., Shpigelman, A., & Aganovic, K. (2020). Impact of pilot-scale processing (thermal, PEF, HPP) on the stability and bioaccessibility of polyphenols and proteins in mixed protein- and polyphenol-rich juice systems. Innovative Food Science & Emerging Technologies, 64, 102426. https://doi.org/10.1016/j.ifset.2020.102426
Sun, M., Mu, T., Sun, H., & Zhang, M. (2014). Digestibility and structural properties of thermal and high hydrostatic pressure treated sweet potato (Ipomoea batatas L.) protein. Plant Foods for Human Nutrition, 69(3), 270-275. https://doi.org/10.1007/s11130-014-0426-9
Tang, C. (2017). Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition, 57(12), 2636-2679. https://doi.org/10.1080/10408398.2015.1067594
Tang, C. (2020). Globular proteins as soft particles for stabilizing emulsions: Concepts and strategies. Food Hydrocolloids, 103, 105664. https://doi.org/10.1016/j.foodhyd.2020.105664
Tang, S., Li, J., Huang, G., & Yan, L. (2021). Predicting protein surface property with its surface hydrophobicity. Protein & Peptide Letters, 28(8), 938-944. http://doi.org/10.2174/0929866528666210222160603
Totosaus, A., Montejano, J. G., Salazar, J. A., & Guerrero, I. (2002). A review of physical and chemical protein-gel induction. International Journal of Food Science & Technology, 37(6), 589-601. https://doi.org/10.1046/j.1365-2621.2002.00623.x
Tribst, A. A. L., Ribeiro, L. R., & Cristianini, M. (2017). Comparison of the effects of high pressure homogenization and high pressure processing on the enzyme activity and antimicrobial profile of lysozyme. Innovative Food Science & Emerging Technologies, 43, 60-67. https://doi.org/10.1016/j.ifset.2017.07.026
Trujillo, A. J., Castro, N., Quevedo, J. M., Argüello, A., Capote, J., & Guamis, B. (2007). Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine colostrum. Journal of Dairy Science, 90(2), 833-839. https://doi.org/10.3168/jds.S0022-0302(07)71567-9
Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology, 108, 27-39. https://doi.org/10.1016/j.tifs.2020.12.002
Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2007a). Foaming properties of egg white proteins affected by heat or high pressure treatment. Journal of Food Engineering, 78(4), 1410-1426. https://doi.org/10.1016/j.jfoodeng.2006.01.013
Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2007b). Kinetic study on the combined effect of high pressure and temperature on the physico-chemical properties of egg white proteins. Journal of Food Engineering, 78(1), 206-216. https://doi.org/10.1016/j.jfoodeng.2005.09.018
van Lieshout, G. A. A., Lambers, T. T., Bragt, M. C. E., & Hettinga, K. A. (2020). How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Critical Reviews in Food Science and Nutrition, 60(14), 2422-2445. https://doi.org/10.1080/10408398.2019.1646703
Villamonte, G., Pottier, L., & de Lamballerie, M. (2016). Influence of high-pressure processing on the physicochemical and the emulsifying properties of sarcoplasmic proteins from hake (Merluccius merluccius). European Food Research and Technology, 242(5), 667-675. https://doi.org/10.1007/s00217-015-2574-z
Wang, J., Li, Z., Zheng, B., Zhang, Y., & Guo, Z. (2019a). Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin. LWT, 100, 381-390. https://doi.org/10.1016/j.lwt.2018.10.053
Wang, K., Sun, D., Pu, H., & Wei, Q. (2017a). Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends in Food Science & Technology, 67, 207-219. https://doi.org/10.1016/j.tifs.2017.06.015
Wang, M., Chen, X., Zou, Y., Chen, H., Xue, S., Qian, C., Wang, P., Xu, X., & Zhou, G. (2017b). High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel. International Journal of Food Science & Technology, 52(3), 724-732. https://doi.org/10.1111/ijfs.13327
Wang, R., Jiang, S., Li, Y., Xu, Y., Zhang, T., Zhang, F., Feng, X., Zhao, Y., & Zeng, M. (2019b). Effects of high pressure modification on conformation and digestibility properties of oyster protein. Molecules (Basel, Switzerland), 24(18), 3273. https://doi.org/10.3390/molecules24183273
Wang, X., Tang, C., Li, B., Yang, X., Li, L., & Ma, C. (2008). Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloids, 22(4), 560-567. https://doi.org/10.1016/j.foodhyd.2007.01.027
Wesolowska, A., Sinkiewicz-Darol, E., Barbarska, O., Strom, K., Rutkowska, M., Karzel, K., Rosiak, E., Oledzka, G., Orczyk-Pawiłowicz, M., Rzoska, S., & Borszewska-Kornacka, M. K. (2018). New achievements in high-pressure processing to preserve human milk bioactivity. Frontiers in Pediatrics, 6(323),. https://doi.org/10.3389/fped.2018.00323
Winter, R. (2019). Interrogating the structural dynamics and energetics of biomolecular systems with pressure modulation. Annual Review of Biophysics, 48(1), 441-463. https://doi.org/10.1146/annurev-biophys-052118-115601
Xi, J., & He, M. (2018). High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin. Journal of Food Science and Technology, 55(2), 630-637. https://doi.org/10.1007/s13197-017-2972-2
Xue, S., Yang, H., Yu, X., Qian, C., Wang, M., Zou, Y., Xu, X., & Zhou, G. (2018). Applications of high pressure to pre-rigor rabbit muscles affect the water characteristics of myosin gels. Food Chemistry, 240, 59-66. https://doi.org/10.1016/j.foodchem.2017.07.096
Yan, W., Qiao, L., Gu, X., Li, J., Xu, R., Wang, M., Reuhs, B., & Yang, Y. (2010). Effect of high pressure treatment on the physicochemical and functional properties of egg yolk. European Food Research and Technology, 231(3), 371-377. https://doi.org/10.1007/s00217-010-1286-7
Yang, H., Yang, A., Gao, J., & Chen, H. (2014). Characterization of physicochemical properties and IgE-binding of soybean proteins derived from the HHP-treated seeds. Journal of Food Science, 79(11), C2157-C2163. https://doi.org/10.1111/1750-3841.12665
Yang, J., & Powers, J. R. (2016). Effects of high pressure on food proteins. In V. M. Balasubramaniam, G. V. Barbosa-Cánovas, & H. L. M. Lelieveld (Eds.), High pressure processing of food: Principles, technology and applications (pp. 353-389). Springer. https://doi.org/10.1007/978-1-4939-3234-4_18
Yang, P., Rao, L., Zhao, L., Wu, X., Wang, Y., & Liao, X. (2021). High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1800-1828. https://doi.org/10.1111/1541-4337.12724
Yao, Y., Jia, Y., Lu, X., & Li, H. (2022). Release and conformational changes in allergenic proteins from wheat gluten induced by high hydrostatic pressure. Food Chemistry, 368, 130805. https://doi.org/10.1016/j.foodchem.2021.130805
Yin, S., Tang, C., Wen, Q., Yang, X., & Li, L. (2008). Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment. Food Chemistry, 110(4), 938-945. https://doi.org/10.1016/j.foodchem.2008.02.090
Zeece, M., Huppertz, T., & Kelly, A. (2008). Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innovative Food Science & Emerging Technologies, 9(1), 62-69. https://doi.org/10.1016/j.ifset.2007.05.004
Zhang, T., Lv, C., Yun, S., Liao, X., Zhao, G., & Leng, X. (2012). Effect of high hydrostatic pressure (HHP) on structure and activity of phytoferritin. Food Chemistry, 130(2), 273-278. https://doi.org/10.1016/j.foodchem.2011.07.034
Zhang, Y., Deng, Y., & Zhao, Y. (2017a). Structure-based modelling of hemocyanin allergenicity in squid and its response to high hydrostatic pressure. Scientific Reports, 7(1), 40021. https://doi.org/10.1038/srep40021
Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111-118. https://doi.org/10.1016/j.foodchem.2015.04.129
Zhang, Z., Yang, Y., Zhou, P., Zhang, X., & Wang, J. (2017b). Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 217, 678-686. https://doi.org/10.1016/j.foodchem.2016.09.040
Zhao, J., Zhou, T., Zhang, Y., Ni, Y., & Li, Q. (2015). Optimization of arachin extraction from defatted peanut (Arachis hypogaea) cakes and effects of ultra-high pressure (UHP) treatment on physiochemical properties of arachin. Food and Bioproducts Processing, 95, 38-46. https://doi.org/10.1016/j.fbp.2015.03.009
Zhao, Z., Mu, T., Zhang, M., & Richel, A. (2018). Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food and Bioprocess Technology, 11(9), 1719-1732. https://doi.org/10.1007/s11947-018-2137-y
Zhao, Z., Mu, T., Zhang, M., & Richel, A. (2019). Effects of sulfur-containing amino acids and high hydrostatic pressure on structure and gelation properties of sweet potato protein. Food and Bioprocess Technology, 12(11), 1863-1873. https://doi.org/10.1007/s11947-019-02343-6
Zheng, H., Han, M., Bai, Y., Xu, X., & Zhou, G. (2019). Combination of high pressure and heat on the gelation of chicken myofibrillar proteins. Innovative Food Science & Emerging Technologies, 52, 122-130. https://doi.org/10.1016/j.ifset.2018.10.014
Zhou, A., Lin, L., Liang, Y., Benjakul, S., Shi, X., & Liu, X. (2014). Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure. Food Chemistry, 156, 402-407. https://doi.org/10.1016/j.foodchem.2014.02.013
Zhou, H., Wang, C., Ye, J., Chen, H., Tao, R., & Cao, F. (2016). Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innovative Food Science & Emerging Technologies, 34, 187-195. https://doi.org/10.1016/j.ifset.2016.02.001
Zhu, S. M., Lin, S. L., Ramaswamy, H. S., Yu, Y., & Zhang, Q. T. (2017). Enhancement of functional properties of rice bran proteins by high pressure treatment and their correlation with surface hydrophobicity. Food and Bioprocess Technology, 10(2), 317-327. https://doi.org/10.1007/s11947-016-1818-7