A coarse-grained approach to NMR-data-assisted modeling of protein structures.

NMR-assisted protein-structure modeling UNRES ambiguous restraints coarse-grained models

Journal

Journal of computational chemistry
ISSN: 1096-987X
Titre abrégé: J Comput Chem
Pays: United States
ID NLM: 9878362

Informations de publication

Date de publication:
05 12 2022
Historique:
revised: 03 08 2022
received: 25 03 2022
accepted: 05 09 2022
pubmed: 23 9 2022
medline: 15 10 2022
entrez: 22 9 2022
Statut: ppublish

Résumé

The ESCASA algorithm for analytical estimation of proton positions from coarse-grained geometry developed in our recent work has been implemented in modeling protein structures with the highly coarse-grained UNRES model of polypeptide chains (two sites per residue) and nuclear magnetic resonance (NMR) data. A penalty function with the shape of intersecting gorges was applied to treat ambiguous distance restraints, which automatically selects consistent restraints. Hamiltonian replica exchange molecular dynamics was used to carry out the conformational search. The method was tested with both unambiguous and ambiguous restraints producing good-quality models with GDT_TS from 7.4 units higher to 14.4 units lower than those obtained with the CYANA or MELD software for protein-structure determination from NMR data at the all-atom resolution. The method can thus be applied in modeling the structures of flexible proteins, for which extensive conformational search enabled by coarse-graining is more important than high modeling accuracy.

Identifiants

pubmed: 36134668
doi: 10.1002/jcc.27003
doi:

Substances chimiques

Peptides 0
Proteins 0
Protons 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2047-2059

Subventions

Organisme : Narodowe Centrum Nauki
ID : UMO-2021/40/Q/ST4/00035

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

P. Atkins, R. Friedman, Molecular Quantum Mechanics, Oxford University Press, Oxford 2010.
R. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford 1989.
D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E. Cheatham, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, P. A. Kollman, Amber 14, University of California, San Francisco 2014.
H. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43.
A. Kolinski, J. Skolnick, Polymer 2004, 45, 511.
A. Kolinski, J. Skolnick, Proteins 1998, 32, 475.
S. J. Marrink, D. P. Tieleman, Chem. Soc. Rev. 2013, 42, 6801.
A. Liwo, M. Baranowski, C. Czaplewski, E. Gołaś, Y. He, D. Jagieła, P. Krupa, M. Maciejczyk, M. Makowski, M. A. Mozolewska, A. Niadzvedtski, S. Ołdziej, H. A. Scheraga, A. K. Sieradzan, R. Ślusarz, T. Wirecki, Y. Yin, B. Zaborowski, J. Mol. Model. 2014, 20, 2306.
S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid, A. Kolinski, Chem. Rev. 2016, 116, 7898.
N. Singh, W. Li, Int. J. Mol. Sci. 2019, 20, 3774.
S. Takada, R. Kanada, C. Tan, T. Terakawa, W. Li, H. Kenzaki, Acc. Chem. Res. 2015, 48, 3026.
G. Voth, Coarse-Graining of Condensed Phase and Biomolecular Systems, 1st ed., CRC Press, Taylor & Francis Group, Boca Raton 2008.
J. Dama, A. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A. Dinner, G. Voth, J. Chem. Theory Comput. 2013, 9, 2466.
A. Davtyan, J. Dama, A. Sinitskiy, G. Voth, J. Chem. Theory Comput. 2014, 10, 5265.
M. Nanias, M. Chinchio, J. Pillardy, D. Ripoll, H. A. Scheraga, Proc. Nat. Acad. Sci. U. S. A. 2003, 100, 1706.
M. Khalili, A. Liwo, A. Jagielska, H. A. Scheraga, J. Phys. Chem. B 2005, 109, 13798.
D. A. Case, H. J. Dyson, P. E. Wright, in NMR in Proteins (Eds: G. Clore, A. Gronenborn), MacMillan, New York 1993, p. 53.
K. Joo, I. Joung, J. Lee, J. Lee, W. Lee, B. Brooks, S. J. Lee, J. Lee, Proteins 2015, 83, 2251.
M. P. Williamson, T. F. Havel, K. Wüthrich, J. Mol. Biol. 1985, 182, 295.
J. Cavanagh, W. J. Fairbrother, A. G. Palmer, M. Rance, N. J. Skelton, Protein NMR Spectroscopy, 2nd ed., Academic Press, Burlington 2007.
M. Nilges, J. Mol. Biol. 1995, 245, 645.
Y. J. Huang, K. P. Brock, Y. Ishida, G. V. T. Swapna, M. Inouye, D. S. Marks, C. Sander, G. T. Montelione, Meth. Enzymol. 2019, 614, 363.
Y. J. Huang, N. Zhang, B. Bersch, K. Fidelis, M. Inouye, Y. Ishida, A. Kryshtafovych, N. Kobayashi, Y. Kuroda, G. Liu, A. LiWang, G. V. T. Swapna, N. Wu, T. Yamazaki, G. T. Montelione, Proteins 2021, 89, 1959.
C. A. Rohl, C. E. Strauss, K. M. Misura, D. Baker, Numerical Computer Methods, Part D, Vol. 383, London, England Academic Press, 2004, p. 66.
A. Davtyan, N. P. Schafer, W. Zheng, C. Clementi, P. G. Wolynes, G. A. Papoian, J. Phys. Chem. B 2012, 116, 8494.
S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, J. Phys. Chem. B 2007, 111, 7812.
L. Monticelli, S. Kandasamy, X. Periole, R. Larson, D. Tieleman, S. Marrink, J. Chem. Theory Computat. 2008, 4, 819.
D. Latek, A. Koliński, J. Comput. Chem. 2011, 32, 536.
A. Kolinski, Acta Biochim. Pol. 2004, 51, 349.
E. Lubecka, A. Liwo, J. Comput. Chem. 2021, 42, 1579.
J. K. Everett, R. Tejero, S. B. K. Murthy, T. B. Acton, J. M. Aramini, M. C. Baran, J. Benach, J. R. Cort, A. Eletsky, F. Forouhar, R. Guan, A. P. Kuzin, H. W. Lee, G. Liu, R. Mani, B. Mao, J. L. Mills, A. F. Montelione, K. Pederson, R. Powers, T. Ramelot, P. Rossi, J. Seetharaman, D. Snyder, G. V. T. Swapna, S. M. Vorobiev, Y. Wu, R. Xiao, Y. Yang, C. H. Arrowsmith, J. F. Hunt, M. A. Kennedy, J. H. Prestegard, T. Szyperski, L. Tong, G. T. Montelione, Protein Sci. 2016, 25, 30.
B. Koepnick, J. Flatten, T. Husain, A. Ford, D.-A. Silva, M. J. Bick, A. Bauer, G. Liu, Y. Ishida, A. Boykov, R. D. Estep, S. Kleinfelter, T. Nørgård-Solano, L. Wei, F. Players, G. T. Montelione, F. DiMaio, Z. Popović, F. Khatib, S. Cooper, D. Baker, Nature 2019, 570, 390.
D. Sala, Y. J. Huang, C. A. Cole, D. A. Snyder, G. Liu, Y. Ishida, G. V. T. Swapna, K. P. Brock, C. Sander, K. Fidelis, A. Kryshtafovych, M. Inouye, R. Tejero, H. Valafar, A. Rosato, G. T. Montelione, Proteins 2019, 87, 1315.
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235.
A. Antoniak, I. Biskupek, K. Bojarski, C. Czaplewski, A. Giełdoń, M. Kogut, M. Kogut, P. Krupa, A. Lipska, A. Liwo, E. A. Lubecka, M. Marcisz, M. Maszota-Zieleniak, S. A. Samsonov, A. K. Sieradzan, M. J. Ślusarz, R. Ślusarz, P. A. Wesołowski, K. Ziȩba, J. Mol. Graph. Model. 2021, 108, 108008.
E. A. Lubecka, A. Liwo, J. Comput. Chem. 2019, 40, 2164.
E. Lubecka, A. Karczyńska, A. Lipska, A. Sieradzan, K. Zieba, C. Sikorska, U. Uciechowska-Kaczmarzyk, S. Samsonov, P. Krupa, M. Mozolewska, Ł. Golon, A. Giełdoń, C. Czaplewski, R. Ślusarz, M. Ślusarz, S. N. Crivelli, A. Liwo, J. Mol. Graph. Model. 2019, 92, 154.
H. Fukunishi, O. Watanabe, S. Takada, J. Chem. Phys. 2002, 116, 9058.
F. Zeller, M. Zacharias, J. Chem. Theory Comput. 2013, 10, 703.
A. S. Karczyńska, C. Czaplewski, P. Krupa, M. A. Mozolewska, K. Joo, J. Lee, A. Liwo, J. Comput. Chem. 2017, 38, 2730.
P. Güntert, C. Mumenthaler, K. Wüthrich, J. Mol. Biol. 1997, 273, 283.
A. Liwo, S. Ołdziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, H. A. Scheraga, J. Comput. Chem. 1997, 18, 849.
A. Liwo, M. Khalili, C. Czaplewski, S. Kalinowski, S. Ołdziej, K. Wachucik, H. A. Scheraga, J. Phys. Chem. B 2007, 111, 260.
A. K. Sieradzan, M. Makowski, A. Augustynowicz, A. Liwo, J. Chem. Phys. 2017, 146, 124106.
A. Liwo, A. K. Sieradzan, A. G. Lipska, C. Czaplewski, I. Joung, W. żmudzińska, A. Hałabis, S. Ołdziej, J. Chem. Phys. 2019, 150, 155104.
P. Rotkiewicz, J. Skolnick, J. Comput. Chem. 2008, 29, 1460.
A. K. Sieradzan, R. Jakubowski, J. Comput. Chem. 2017, 38, 553.
K. Nishikawa, F. A. Momany, H. A. Scheraga, Macromolecules 1974, 7, 797.
U. H. Hansmann, Chem. Phys. Lett. 1997, 281, 140.
Y. M. Rhee, V. S. Pande, Biophys. J. 2003, 84, 775.
C. Czaplewski, S. Kalinowski, A. Liwo, H. A. Scheraga, J. Chem. Theor. Comput. 2009, 5, 627.
P. Krupa, M. Mozolewska, M. Wiśniewska, Y. Yin, Y. He, A. Sieradzan, R. Ganzynkowicz, A. Lipska, A. Karczyńska, M. Ślusarz, A. Giełdoń, C. Czaplewski, D. Jagieła, B. Zaborowski, H. A. Scheraga, A. Liwo, Bioinformatics 2016, 32, 3270.
S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. M. Rosenberg, J. Comput. Chem. 1992, 13, 1011.
Q. Wang, A. A. Canutescu, R. L. Dunbrack, Nat. Protoc. 2008, 3, 1832.
S. Trebst, M. Troyer, U. H. E. Hansmann, J. Chem. Phys. 2006, 124, 174903.
F. Rakowski, P. Grochowski, B. Lesyng, A. Liwo, H. A. Scheraga, J. Chem. Phys. 2006, 125, 204107.
A. Zemla, Nucleic Acids Res. 2003, 31, 3370.
J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, A. Tramontano, Proteins 2013, 82(Suppl 2), 1.
A. Jain, N. Vaidehi, G. Rodriguez, J. Comput. Phys. 1993, 106, 258.
A. Mondal, A. Perez, Front. Mol. Biosci. 2021, 8, 774394.

Auteurs

Emilia A Lubecka (EA)

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland.

Adam Liwo (A)

Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Animals Huntington Disease Mitochondria Neurons Mice
Nitriles Tensile Strength Materials Testing Gloves, Protective Product Packaging

Classifications MeSH