Investigating plant-microbe interactions within the root.

Genetic manipulation Microbe–microbe interactions Omics Plant–microbe interactions Root microbiome

Journal

Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427

Informations de publication

Date de publication:
22 Sep 2022
Historique:
received: 13 05 2022
accepted: 12 09 2022
revised: 15 07 2022
entrez: 22 9 2022
pubmed: 23 9 2022
medline: 28 9 2022
Statut: epublish

Résumé

A diverse lineage of microorganisms inhabits plant roots and interacts with plants in various ways. Further, these microbes communicate and interact with each other within the root microbial community. These symbioses add an array of influences, such as plant growth promotion or indirect protection to the host plant. Omics technology and genetic manipulation have been applied to unravel these interactions. Recent studies probed plants' control over microbes. However, the activity of the root microbial community under host influence has not been elucidated enough. In this mini-review, we discussed the recent advances and limits of omics technology and genetics for dissecting the activity of the root-associated microbial community. These materials may help us formulate the correct experimental plans to capture the entire molecular mechanisms of the plant-microbe interaction.

Identifiants

pubmed: 36136275
doi: 10.1007/s00203-022-03257-2
pii: 10.1007/s00203-022-03257-2
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

639

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 20H02986
Organisme : Japan Society for the Promotion of Science
ID : 20H02986
Organisme : Japan Science and Technology Agency
ID : JPMJFR200A
Organisme : Japan Science and Technology Agency
ID : JPMJFR200A

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352. https://doi.org/10.1371/journal.pbio.1002352
doi: 10.1371/journal.pbio.1002352 pubmed: 26788878 pmcid: 4720289
Álvarez C, Brenes-Álvarez M, Molina-Heredia FP, Mariscal V (2022) Quantitative proteomics at early stages of the symbiotic interaction between Oryza sativa and Nostoc punctiforme reveals novel proteins involved in the symbiotic crosstalk. Plant Cell Physiol. https://doi.org/10.1093/PCP/PCAC043
doi: 10.1093/PCP/PCAC043 pubmed: 35373828
Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer KH (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500. https://doi.org/10.1128/JB.178.12.3496-3500.1996
doi: 10.1128/JB.178.12.3496-3500.1996 pubmed: 8655546 pmcid: 178118
Andrés-Barrao C, Alzubaidy H, Jalal R, Mariappan KG, de Zélicourt A, Bokhari A, Artyukh O, Alwutayd K, Rawat A, Shekhawat K, Almeida-Trapp M, Saad MM, Hirt H (2021) Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance. Proc Natl Acad Sci USA 118:e2107417118. https://doi.org/10.1073/PNAS.2107417118
doi: 10.1073/PNAS.2107417118 pubmed: 34772809 pmcid: 8609655
Angulo V, Beriot N, Garcia-Hernandez E, Li E, Masteling R, Lau JA (2022) Plant–microbe eco-evolutionary dynamics in a changing world. New Phytol 234:1919–1928. https://doi.org/10.1111/NPH.18015
doi: 10.1111/NPH.18015 pubmed: 35114015
Babenko LM, Kosakivska IV, Romanenko КO (2021) Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol Int 46:523–534. https://doi.org/10.1002/CBIN.11749
doi: 10.1002/CBIN.11749 pubmed: 34937124
Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369. https://doi.org/10.1038/nature16192
doi: 10.1038/nature16192 pubmed: 26633631
Barlow JT, Bogatyrev SR, Ismagilov RF (2020) A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat Commun 11:2590. https://doi.org/10.1038/s41467-020-16224-6
doi: 10.1038/s41467-020-16224-6 pubmed: 32444602 pmcid: 7244552
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/S41587-019-0209-9
doi: 10.1038/S41587-019-0209-9 pubmed: 31341288 pmcid: 7015180
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Ann Rev Phytopathol 55:61–83. https://doi.org/10.1146/annurev-phyto-080516-035641
doi: 10.1146/annurev-phyto-080516-035641
Broberg M, Doonan J, Mundt F, Denman S, McDonald JE (2018) Integrated multi-omic analysis of host-microbiota interactions in acute oak decline. Microbiome 6:21. https://doi.org/10.1186/S40168-018-0408-5
doi: 10.1186/S40168-018-0408-5 pubmed: 29378627 pmcid: 5789699
Bulgarelli D, Rott M, Schlaeppi K, Loren V, van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. https://doi.org/10.1038/nature11336
doi: 10.1038/nature11336 pubmed: 22859207
Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 108:14288–14293. https://doi.org/10.1073/pnas.1101591108
doi: 10.1073/pnas.1101591108 pubmed: 21825123 pmcid: 3161577
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
doi: 10.1038/nmeth.f.303 pubmed: 20383131 pmcid: 3156573
Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434. https://doi.org/10.1073/pnas.0704350104
doi: 10.1073/pnas.0704350104 pubmed: 17942690 pmcid: 2077273
Choi V, Jeong S, Kim E (2022) Variation of the seed endophytic bacteria among plant populations and their plant growth-promoting activities in a wild mustard plant species, Capsella bursa- pastoris. Ecol Evol 12:e8683. https://doi.org/10.1002/ece3.8683
doi: 10.1002/ece3.8683 pubmed: 35309752 pmcid: 8901890
Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G (2010) An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 10:1391–1400. https://doi.org/10.1002/PMIC.200900710
doi: 10.1002/PMIC.200900710 pubmed: 20104621
Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure variation and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920.  https://doi.org/10.1073/pnas.1414592112
doi: 10.1073/pnas.1414592112
Estrela S, Vila JCC, Lu N, Bajić D, Rebolleda-Gómez M, Chang CY, Goldford JE, Sanchez-Gorostiaga A, Sánchez Á (2022) Functional attractors in microbial community assembly. Cell Syst 13:29-42.e7. https://doi.org/10.1016/j.cels.2021.09.011
doi: 10.1016/j.cels.2021.09.011 pubmed: 34653368
Finkel OM, Delmont TO, Post AF, Belkin S (2016) Metagenomic signatures of bacterial adaptation to life in the phyllosphere of a salt-secreting desert tree. Appl Environ Microbiol 82:2854–2861. https://doi.org/10.1128/AEM.00483-16
doi: 10.1128/AEM.00483-16 pubmed: 26944845 pmcid: 4836421
Finkel OM, Salas-González I, Castrillo G, Spaepen S, Law TF, Teixeira PJPL, Jones CD, Dangl JL (2019) The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol 17:e3000534. https://doi.org/10.1371/journal.pbio.3000534
doi: 10.1371/journal.pbio.3000534 pubmed: 31721759 pmcid: 6876890
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A 115:E1157–E1165. https://doi.org/10.1073/pnas.1717617115
doi: 10.1073/pnas.1717617115 pubmed: 29358405 pmcid: 5819437
Gowda K, Ping D, Mani M, Kuehn S (2022) Genomic structure predicts metabolite dynamics in microbial communities. Cell 185:530-546.e25. https://doi.org/10.1016/J.CELL.2021.12.036
doi: 10.1016/J.CELL.2021.12.036 pubmed: 35085485
Guo CJ, Allen BM, Hiam KJ, Dodd D, Van Treuren W, Higginbottom S, Nagashima K, Fischer CR, Sonnenburg JL, Spitzer MH, Fischbach MA (2019) Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 366:eaav1282. https://doi.org/10.1126/science.aav1282
Guo X, Zhang X, Qin Y, Liu YX, Zhang J, Zhang N, Wu K, Qu B, He Z, Wang X, Zhang X, Hacquard S, Fu X, Bai Y (2019) Host-associated quantitative abundance profiling reveals the microbial load variation of root microbiome. Plant Commun 1:100003.  https://doi.org/10.1016/j.xplc.2019.100003
doi: 10.1016/j.xplc.2019.100003
Hara S, Wada N, Hsiao SS-Y, Zhang M, Bao Z, Iizuka Y, Lee DC, Sato S, Tang SL, Minamisawa K (2022) In vivo evidence of single
doi: 10.1128/MBIO.01255-22 pubmed: 35608299
Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, Kopriva S, Voges MJEEE, Sattely ES, Garrido-Oter R, Schulze-Lefert P (2020) Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28:825-837.e6. https://doi.org/10.1016/j.chom.2020.09.006
doi: 10.1016/j.chom.2020.09.006 pubmed: 33027611 pmcid: 7738756
Haque A, Engel J, Teichmann SA, Lönnberg T (2017) A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 9:75. https://doi.org/10.1186/s13073-017-0467-4
doi: 10.1186/s13073-017-0467-4 pubmed: 28821273 pmcid: 5561556
Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell RJ, Schulze-Lefert P (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474. https://doi.org/10.1016/j.cell.2016.02.028
doi: 10.1016/j.cell.2016.02.028 pubmed: 26997485 pmcid: 4826447
Imdahl F, Vafadarnejad E, Homberger C, Saliba AE, Vogel J (2020) Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat Microbiol 5:1202–1206. https://doi.org/10.1038/s41564-020-0774-1
doi: 10.1038/s41564-020-0774-1 pubmed: 32807892
Jin WB, Li TT, Huo D, Qu S, Li XV, Arifuzzaman M, Lima SF, Shi HQ, Wang A, Putzel GG, Longman RS, Artis D, Guo CJ (2022) Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185:547-562.e22. https://doi.org/10.1016/J.CELL.2021.12.035
doi: 10.1016/J.CELL.2021.12.035 pubmed: 35051369
Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029. https://doi.org/10.1038/s41467-019-13036-1
doi: 10.1038/s41467-019-13036-1 pubmed: 31695033 pmcid: 6834636
Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, Kersten S, Lundberg DS, Neumann M, Regalado J, Neher RA, Kemen E, Weigel D (2018) Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe 24:168-179.e4. https://doi.org/10.1016/J.CHOM.2018.06.011
doi: 10.1016/J.CHOM.2018.06.011 pubmed: 30001519 pmcid: 6054916
Knapp DG, Lázár A, Molnár A, Vajna B, Karácsony Z, Váczy KZ, Kovács GM (2021) Above-ground parts of white grapevine Vitis vinifera cv. furmint share core members of the fungal microbiome. Environ Microbiol Rep 13:509–520. https://doi.org/10.1111/1758-2229.12950
doi: 10.1111/1758-2229.12950 pubmed: 33951321
Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390. https://doi.org/10.1038/ismej.2011.192
doi: 10.1038/ismej.2011.192 pubmed: 22189496
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620. https://doi.org/10.1016/j.molcel.2015.04.005
doi: 10.1016/j.molcel.2015.04.005 pubmed: 26000846
Lam TJ, Stamboulian M, Han W, Ye Y (2020) Model-based and phylogenetically adjusted quantification of metabolic interaction between microbial species. PLoS Comput Biol 16:e1007951. https://doi.org/10.1371/journal.pcbi.1007951
doi: 10.1371/journal.pcbi.1007951 pubmed: 33125363 pmcid: 7657538
Lardi M, Liu Y, Purtschert G, Bolzan de Campos SB, Pessi G (2017) Transcriptome analysis of Paraburkholderia phymatum under nitrogen starvation and during symbiosis with Phaseolus vulgaris. Genes 8:389. https://doi.org/10.3390/GENES8120389
doi: 10.3390/GENES8120389 pmcid: 5748707
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Plant microbiome. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864. https://doi.org/10.1126/science.aaa8764
doi: 10.1126/science.aaa8764 pubmed: 26184915
Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, Farjalla VF, Doebeli M (2016) High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol 1:15. https://doi.org/10.1038/s41559-016-0015
doi: 10.1038/s41559-016-0015 pubmed: 28812567
Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. https://doi.org/10.1038/nature11237
doi: 10.1038/nature11237 pubmed: 22859206 pmcid: 4074413
Lundberg DS, Pramoj Na Ayutthaya PPN, Strauß A, Shirsekar G, Lo WS, Lahaye T, Weigel D (2021) Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. Elife. https://doi.org/10.7554/eLife.66186
doi: 10.7554/eLife.66186 pubmed: 34292157 pmcid: 8387020
Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL (2013) Practical innovations for high-throughput amplicon sequencing. Nat Methods 10:999–1002. https://doi.org/10.1038/nmeth.2634
doi: 10.1038/nmeth.2634 pubmed: 23995388
Mahdi LK, Miyauchi S, Uhlmann C, Garrido-Oter R, Langen G, Wawra S, Niu Y, Guan R, Robertson-Albertyn S, Bulgarelli D, Parker JE, Zuccaro A (2022) The fungal root endophyte Serendipita vermifera displays inter-kingdom synergistic beneficial effects with the microbiota in Arabidopsis thaliana and barley. ISME J 16:876–889. https://doi.org/10.1038/s41396-021-01138-y
doi: 10.1038/s41396-021-01138-y pubmed: 34686763
Matsumoto A, Schlüter T, Melkonian K, Takeda A, Nakagami H, Mine A (2022) A versatile Tn7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants. Plant Commun 3:100227. https://doi.org/10.1016/J.XPLC.2021.100227
doi: 10.1016/J.XPLC.2021.100227 pubmed: 35059625
McAllister KN, Bouillaut L, Kahn JN, Self WT, Sorg JA (2017) Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Sci Rep 7:14672. https://doi.org/10.1038/S41598-017-15236-5
doi: 10.1038/S41598-017-15236-5 pubmed: 29116155 pmcid: 5677094
Mohr W, Lehnen N, Ahmerkamp S, Marchant HK, Graf JS, Tschitschko B, Yilmaz P, Littmann S, Gruber-Vodicka H, Leisch N, Weber M, Lott C, Schubert CJ, Milucka J, Kuypers MMM (2021) Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature 600:105–109. https://doi.org/10.1038/s41586-021-04063-4
doi: 10.1038/s41586-021-04063-4 pubmed: 34732889 pmcid: 8636270
Musat N, Musat F, Weber PK, Pett-Ridge J (2016) Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol 41:114–121. https://doi.org/10.1016/J.COPBIO.2016.06.007
doi: 10.1016/J.COPBIO.2016.06.007 pubmed: 27419912
Negrel L, Halter D, Wiedemann-Merdinoglu S, Rustenholz C, Merdinoglu D, Hugueney P, Baltenweck R (2018) Identification of lipid markers of Plasmopara viticola infection in grapevine using a non-targeted metabolomic approach. Front Plant Sci 9:360. https://doi.org/10.3389/fpls.2018.00360
doi: 10.3389/fpls.2018.00360 pubmed: 29619037 pmcid: 5871909
Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y, He SY, Tsuda K (2018) Transcriptome landscape of a bacterial pathogen under plant immunity. Proc Natl Acad Sci U S A 115:E3055–E3064. https://doi.org/10.1073/PNAS.1800529115
doi: 10.1073/PNAS.1800529115 pubmed: 29531038 pmcid: 5879711
Nobori T, Wang Y, Wu J, Stolze SC, Tsuda Y, Finkemeier I, Nakagami H, Tsuda K (2020) Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nat Plants 6:883–896. https://doi.org/10.1038/s41477-020-0690-7
doi: 10.1038/s41477-020-0690-7 pubmed: 32541952
O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065. https://doi.org/10.1038/ng.2372
doi: 10.1038/ng.2372 pubmed: 22885923
Pathak KV, Keharia H (2013) Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). J Appl Microbiol 114:1300–1310. https://doi.org/10.1111/JAM.12161
doi: 10.1111/JAM.12161 pubmed: 23387377
Plyuta VA, Chernikova AS, Sidorova DE, Kupriyanova EV, Koksharova OA, Chernin LS, Khmel IA (2021) Modulation of Arabidopsis thaliana growth by volatile substances emitted by Pseudomonas and Serratia strains. World J Microbiol Biotechnol 37:82. https://doi.org/10.1007/S11274-021-03047-W
doi: 10.1007/S11274-021-03047-W pubmed: 33855623
Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, Shirsekar G, Weigel D (2020) Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J 14:2116–2130. https://doi.org/10.1038/s41396-020-0665-8
doi: 10.1038/s41396-020-0665-8 pubmed: 32405027 pmcid: 7368051
Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:78. https://doi.org/10.1186/S40168-018-0457-9
doi: 10.1186/S40168-018-0457-9 pubmed: 29695294 pmcid: 5922317
Rubin BE, Diamond S, Cress BF, Crits-Christoph A, Lou YC, Borges AL, Shivram H, He C, Xu M, Zhou Z, Smith SJ, Rovinsky R, Smock DCJ, Tang K, Owens TK, Krishnappa N, Sachdeva R, Barrangou R, Deutschbauer AM et al (2022) Species- and site-specific genome editing in complex bacterial communities. Nat Microbiol 7:34–47. https://doi.org/10.1038/s41564-021-01014-7
doi: 10.1038/s41564-021-01014-7 pubmed: 34873292
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/PNAS.1117018109
doi: 10.1073/PNAS.1117018109
Sheng K, Cao W, Niu Y, Deng Q, Zong C (2017) Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods 14:267–270. https://doi.org/10.1038/nmeth.4145
doi: 10.1038/nmeth.4145 pubmed: 28092691
Slavov N (2020) Unpicking the proteome in single cells. Science 367:512–513. https://doi.org/10.1126/SCIENCE.AAZ6695
doi: 10.1126/SCIENCE.AAZ6695 pubmed: 32001644 pmcid: 7029782
Song L, Xie K (2020) Engineering CRISPR/Cas9 to mitigate abundant host contamination for 16S rRNA gene-based amplicon sequencing. Microbiome 8:80. https://doi.org/10.1186/S40168-020-00859-0
doi: 10.1186/S40168-020-00859-0 pubmed: 32493511 pmcid: 7268715
Steiger MG (2021) Flow Cytometry for Filamentous Fungi. Methods Mol Biol 2234:147–155. https://doi.org/10.1007/978-1-0716-1048-0_13
doi: 10.1007/978-1-0716-1048-0_13 pubmed: 33165787
Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K, Kihara K, Yuki M, Lo N, Deevong P, Hasin S, Boonriam W, Inoue T, Yamada A, Ohkuma M, Hongoh Y (2018) Phylogenetic diversity and single-cell genome analysis of ‘Melainabacteria’, a non-photosynthetic cyanobacterial group, in the termite gut. Microbes Environ 33:50–57. https://doi.org/10.1264/jsme2.ME17137
doi: 10.1264/jsme2.ME17137 pubmed: 29415909 pmcid: 5877343
Vági P, Knapp DG, Kósa A, Seress D, Horváth ÁN, Kovács GM (2014) Simultaneous specific in planta visualization of root-colonizing fungi using fluorescence in situ hybridization (FISH). Mycorrhiza 24:259–266. https://doi.org/10.1007/S00572-013-0533-8
doi: 10.1007/S00572-013-0533-8 pubmed: 24221902
Velásquez AC, Huguet-Tapia JC, He SY (2022) Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proc Natl Acad Sci U S A 119:e2114460119. https://doi.org/10.1073/PNAS.2114460119
doi: 10.1073/PNAS.2114460119 pubmed: 35344425 pmcid: 9168490
Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES (2019) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci U S A 116:12558–12565. https://doi.org/10.1073/PNAS.1820691116
doi: 10.1073/PNAS.1820691116 pubmed: 31152139 pmcid: 6589675
Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155. https://doi.org/10.1016/J.CHOM.2017.07.004
doi: 10.1016/J.CHOM.2017.07.004 pubmed: 28799900
Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim YM, Zink EM, Engbrecht KM, Wang Y, Gao C, DeGraaf S, Madera MA, Sievert JA, Hollingsworth J, Birdseye D, Scheller HV, Hutmacher R, Dahlberg J et al (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A 115:E4284–E4293. https://doi.org/10.1073/PNAS.1717308115
doi: 10.1073/PNAS.1717308115 pubmed: 29666229 pmcid: 5939072
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey FP, Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X, Hochholdinger F (2021) Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants 7:481–499. https://doi.org/10.1038/s41477-021-00897-y
doi: 10.1038/s41477-021-00897-y pubmed: 33833418
Yu X, Lund SP, Greenwald JW, Records AH, Scott RA, Nettleton D, Lindow SE, Gross DC, Beattie GA (2014) Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. Mbio 5:e01683–e11614. https://doi.org/10.1128/mBio.01683-14
doi: 10.1128/mBio.01683-14 pubmed: 25182327 pmcid: 4173789
Zhang W, Corwin JA, Copeland DH, Feusier J, Eshbaugh R, Cook DE, Atwell S, Kliebenstein DJ (2019) Plant–necrotroph co-transcriptome networks illuminate a metabolic battlefield. Elife 8:e44279. https://doi.org/10.7554/eLife.44279
doi: 10.7554/eLife.44279 pubmed: 31081752 pmcid: 6557632

Auteurs

Yuniar Devi Utami (YD)

Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.

Tan Anh Nhi Nguyen (TAN)

Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.

Kei Hiruma (K)

Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan. hiruma@g.ecc.u-tokyo.ac.jp.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Lakes Salinity Archaea Bacteria Microbiota
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH