Morphometric Characterization of an Ex Vivo Porcine Model of Functional Tricuspid Regurgitation.
In-vitro model
Passive beating heart
Pathological model
Tricuspid regurgitation
Tricuspid valve
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
12
04
2022
accepted:
07
09
2022
pubmed:
24
9
2022
medline:
22
3
2023
entrez:
23
9
2022
Statut:
ppublish
Résumé
Emerging treatments for tricuspid valve (TV) regurgitation require realistic TV pathological models for preclinical testing. The aim of this work was to investigate structural features of fresh and defrosted porcine right-heart samples as models of mild and severe functional tricuspid regurgitation (FTR) condition in ex-vivo pulsatile flow platform. Ten fresh hearts were tested ex-vivo under steady and pulsatile flow in typical right-heart loading conditions. Hemodynamics and 3D echocardiographic imaging of TV and right ventricle (RV) were acquired. Hearts were then kept frozen for 14 days, defrosted, and tested again with the same protocol. Morphometric parameters of TV and RV were derived from 3D reconstructions based on echo data. Fresh samples showed a slightly dilated TV morphology, with coaptation gaps among the leaflets. Sample freezing induced worsening of TV insufficiency, with significant (p < 0.05) increases in annulus size (annulus area and perimeter 7.7-3.1% respectively) and dilation of RV (9.5%), which led to an increase in tenting volume (123.7%). These morphologic alterations reflected into a significant increment of regurgitation fraction (27%). Together, such results suggest that fresh porcine heart samples may be a reliable ex-vivo model of mild FTR condition, which can be enhanced through freezing/thawing treatment to model a severe pathological condition.
Identifiants
pubmed: 36151505
doi: 10.1007/s10439-022-03080-2
pii: 10.1007/s10439-022-03080-2
pmc: PMC10023622
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
715-725Informations de copyright
© 2022. The Author(s).
Références
J Thorac Cardiovasc Surg. 2006 Dec;132(6):1258-61
pubmed: 17140937
ASAIO J. 2017 Jul/Aug;63(4):438-444
pubmed: 28059905
Eur J Heart Fail. 2012 Aug;14(8):902-8
pubmed: 22552182
Interv Cardiol. 2018 Jan;13(1):8-13
pubmed: 29593830
EuroIntervention. 2017 Sep 24;13(AA):AA40-AA50
pubmed: 28942385
Med Eng Phys. 2016 Apr;38(4):346-53
pubmed: 26908180
J Am Coll Cardiol. 2016 Sep 6;68(10):1024-33
pubmed: 27585507
Circulation. 2011 Aug 23;124(8):920-9
pubmed: 21810662
ASAIO J. 2022 Oct 1;68(10):1272-1281
pubmed: 36194098
Ann Cardiothorac Surg. 2017 May;6(3):214-222
pubmed: 28706864
Interact Cardiovasc Thorac Surg. 2020 Apr 1;30(4):636-645
pubmed: 31848598
Materials (Basel). 2022 May 05;15(9):
pubmed: 35591636
J Heart Valve Dis. 2011 Nov;20(6):657-63
pubmed: 22655496
Circulation. 2006 Jul 4;114(1 Suppl):I582-7
pubmed: 16820642
J Thorac Cardiovasc Surg. 2010 Jun;139(6):1473-1482.e5
pubmed: 20394950
JACC Cardiovasc Imaging. 2017 Feb;10(2):171-184
pubmed: 28183437
J Thorac Cardiovasc Surg. 2018 Mar;155(3):949-955
pubmed: 29221743
J Thorac Dis. 2017 Apr;9(Suppl 4):S225-S238
pubmed: 28540065
J Am Soc Echocardiogr. 2007 May;20(5):470-6
pubmed: 17484985
Semin Thorac Cardiovasc Surg. 2010 Spring;22(1):76-8
pubmed: 20813321
J Cardiothorac Surg. 2022 Aug 19;17(1):187
pubmed: 35986292
Med Eng Phys. 2015 Apr;37(4):361-6
pubmed: 25666402
Cardiovasc Eng Technol. 2017 Dec;8(4):401-418
pubmed: 28852976
Ann Biomed Eng. 2010 Mar;38(3):694-706
pubmed: 20108044
J Card Surg. 2020 Aug;35(8):1891-1900
pubmed: 32652675
Ann Thorac Surg. 2009 Jan;87(1):83-8; discussion 88-9
pubmed: 19101275
J Cardiovasc Comput Tomogr. 2020 Nov - Dec;14(6):520-523
pubmed: 32409264