Novel and classical morbilliviruses: Current knowledge of three divergent morbillivirus groups.
Journal
Microbiology and immunology
ISSN: 1348-0421
Titre abrégé: Microbiol Immunol
Pays: Australia
ID NLM: 7703966
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
revised:
30
08
2022
received:
01
06
2022
accepted:
23
09
2022
pubmed:
25
9
2022
medline:
15
12
2022
entrez:
24
9
2022
Statut:
ppublish
Résumé
Currently, seven species of morbillivirus have been classified. Six of these species (Measles morbillivirus, Rinderpest morbillivirus, Small ruminant morbillivirus, Canine morbillivirus, Phocine morbillivirus, and Cetacean morbillivirus) are highly infectious and cause serious systemic diseases in humans, livestock, domestic dogs, and wild animals. These species commonly use the host proteins signaling lymphocytic activation molecule (SLAM) and nectin-4 as receptors, and this usage contributes to their virulence. The seventh species (Feline morbillivirus: FeMV) is phylogenetically divergent from the six SLAM-using species. FeMV differs from the SLAM-using morbillivirus group in pathogenicity and infectivity, and is speculated to use non-SLAM receptors. Recently, novel species of morbilliviruses have been discovered in bats, rodents, and domestic pigs. Because the ability to use SLAM and nectin-4 is closely related to the infectivity and pathogenicity of morbilliviruses, investigation of the potential usage of these receptors is useful for estimating infectivity and pathogenicity. The SLAM-binding sites in the receptor-binding protein show high similarity among the SLAM-using morbilliviruses. This feature may help to estimate whether novel morbillivirus species can use SLAM as a receptor. A novel morbillivirus species isolated from wild mice diverged from the classified morbilliviruses in the phylogenetic tree, forming a third group separate from the SLAM-using morbillivirus group and FeMV. This suggests that the novel rodent morbillivirus may exhibit a different risk from the SLAM-using morbillivirus group, and analyses of its viral pathogenicity and infectivity toward humans are warranted.
Identifiants
pubmed: 36151905
doi: 10.1111/1348-0421.13030
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
552-563Subventions
Organisme : JSPS KAKENHI
ID : JP21K05929andJP21H02744
Informations de copyright
© 2022 The Societies and John Wiley & Sons Australia, Ltd.
Références
Tatsuo H, Ono N, Yanagi Y. Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol. 2001;75(13):5842-50.
Mühlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480(7378):530-3.
Birch J, Juleff N, Heaton MP, Kalbfleisch T, Kijas J, Bailey D. Characterization of ovine Nectin-4, a novel peste des petits ruminants virus receptor. J Virol. 2013;87(8):4756-61.
Melia MM, Earle JP, Abdullah H, Reaney K, Tangy F, Cosby SL. Use of SLAM and PVRL4 and identification of pro-HB-EGF as cell entry receptors for wild type phocine distemper virus. PLoS One. 2014;9(8):e106281.
Jo WK, Kruppa J, Habierski A, et al. Evolutionary evidence for multi-host transmission of cetacean morbillivirus. Emerg Microbes Infect. 2018;7(1):201.
Rima B, Balkema-Buschmann A, Dundon WG, et al. ICTV virus taxonomy profile: paramyxoviridae. J Gen Virol. 2019;100(12):1593-4.
Amarasinghe GK, Ayllón MA, Bào Y, et al. Taxonomy of the order Mononegavirales: update 2019. Arch Virol. 2019;164(7):1967-80.
Wang LF, Anderson DE. Viruses in bats and potential spillover to animals and humans. Curr Opin Virol. 2019;34:79-89.
Debat HJ. A South American mouse morbillivirus sheds light into a clade of rodent-borne morbilliviruses. bioRxiv. 2022. 2022.03.18.484959. https://doi.org/10.1101/2022.03.18.484959
Willy ME, Woodward RA, Thornton VB, et al. Management of a measles outbreak among Old World nonhuman primates. Lab Anim Sci. 1999;49(1):42-8.
de Swart RL. Measles studies in the macaque model. Curr Top Microbiol Immunol. 2009;330:55-72.
van Binnendijk RS, van der Heijden RW, Osterhaus AD. Monkeys in measles research. Curr Top Microbiol Immunol. 1995;191:135-48.
WHO. Measles. 2019; cited 2021 August 24. Available from: https://www.who.int/news-room/fact-sheets/detail/measles
Dixon MG, Ferrari M, Antoni S, et al. Progress toward regional measles elimination-worldwide, 2000-2020. MMWR Morb Mortal Wkly Rep. 2021;70(45):1563-9.
Hippee CE, Singh BK, Thurman AL, et al. Measles virus exits human airway epithelia within dislodged metabolically active infectious centers. PLoS Pathog. 2021;17(8):e1009458.
Hibiya K, Iwata H, Kinjo T, et al. Incidence of common infectious diseases in Japan during the COVID-19 pandemic. PLoS One. 2022;17(1):e0261332.
Durrheim DN, Andrus JK, Tabassum S, Bashour H, Githanga D, Pfaff G. A dangerous measles future looms beyond the COVID-19 pandemic. Nat Med. 2021;27(3):360-1.
WHO. Measles virus nomenclature update: 2012. Wkly Epidemiol Rec.2012; 87(9):73-81.
Brown KE, Rota PA, Goodson JL, et al. Genetic characterization of measles and rubella viruses detected through global measles and rubella elimination surveillance, 2016-2018. MMWR Morb Mortal Wkly Rep. 2019;68(26):587-91.
OIE. Technical disease cards. Rinderpest. 2020; cited 2022 August 24. Available from: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/RINDERPEST.pdf
OIE. Rinderpest. Infectious with rinderpest virus. OIE Terrestrial Manual 2018, Chapter 2.1.19. 2022; cited 2022 August 24. Available from: https://www.woah.org/en/document/2-01-19_rinderpest/
Plowright W. The duration of immunity in cattle following inoculation of rinderpest cell culture vaccine. J Hyg (Lond). 1984;92(3):285-96.
Mariner JC, House JA, Mebus CA, et al. Rinderpest eradication: appropriate technology and social innovations. Science. 2012;337(6100):1309-12.
OIE. Declaration of global eradication of rinderpest and implementation of follow-up measures to maintain world freedom from rinderpest. 79th OIE General Session. 2011; cited 2022 August 24. Available from: https://www.woah.org/fileadmin/Home/eng/Media_Center/docs/pdf/RESO_18_EN.pdf
Chamberlain RW, Wamwayi HM, Hockley E, et al. Evidence for different lineages of rinderpest virus reflecting their geographic isolation. J Gen Virol. 1993;74(Pt 12):2775-80.
King S, Rajko-Nenow P, Ropiak HM, Ribeca P, Batten C, Baron MD. Full genome sequencing of archived wild type and vaccine rinderpest virus isolates prior to their destruction. Sci Rep. 2020;10(1):6563.
Jones BA, Mahapatra M, Mdetele D, et al. Peste des petits ruminants virus infection at the wildlife-livestock interface in the greater serengeti ecosystem, 2015-2019. Viruses. 2021;13(5):838.
Benfield CTO, Hill S, Shatar M, et al. Molecular epidemiology of peste des petits ruminants virus emergence in critically endangered Mongolian saiga antelope and other wild ungulates. Virus Evol. 2021;7(2):veab062.
Rahman AU, Dhama K, Ali Q, et al. Peste des petits ruminants in large ruminants, camels and unusual hosts. Vet Q. 2020;40(1):35-42.
Pruvot M, Fine AE, Hollinger C, et al. Outbreak of peste des petits ruminants among critically endangered Mongolian saiga and other wild ungulates, Mongolia, 2016-2017. Emerg Infect Dis. 2020;26(1):51-62.
Niu B, Liang R, Zhou G, et al. Prediction for global peste des petits ruminants outbreaks based on a combination of random forest algorithms and meteorological data. Front Vet Sci. 2020;7:570829.
Schulz C, Fast C, Wernery U, et al. Camelids and cattle are dead-end hosts for peste-des-petits-ruminants virus. Viruses. 2019;11(12):1133.
Couacy-Hymann E, Koffi MY, Kouadio VK, et al. Experimental infection of cattle with wild type peste-des-petits-ruminants virus - their role in its maintenance and spread. Res Vet Sci. 2019;124:118-22.
Saeed IK, Haj MA, Alhassan SM, et al. A study on transmission of Peste des petits ruminants virus between dromedary camels and small ruminants. J Infect Dev Ctries. 2022;16(2):374-82.
Abdalla NAS, Alhussain AEM, Mohammed SI, et al. Detection of peste des petits ruminants virus in pneumonic lungs from clinically apparently healthy camels slaughtered at Tambul slaughterhouse, Central Sudan. Vet Med Sci. 2021;7(4):1166-71.
Fakri FZ, Bamouh Z, Jazouli M, Omari Tadlaoui K, Elharrak M. Experimental infection of dromedary camels with virulent virus of peste des petits ruminants. Vet Microbiol. 2019;235:195-8.
Schulz C, Fast C, Schlottau K, Hoffmann B, Beer M. Neglected hosts of small ruminant morbillivirus. Emerg Infect Dis. 2018;24(12):2334-7.
FAO. Global Strategy for the Control and Eradication of PPR Health. FAO; Rome, Italy. 2015; cited 2022 August 24. Available from: http://www.fao.org/3/I4460E/i4460e.pdf
Donduashvili M, Goginashvili K, Toklikishvili N, et al. Identification of peste des petits ruminants virus, Georgia, 2016. Emerg Infect Dis. 2018;24(8):1576-8.
Dou Y, Liang Z, Prajapati M, Zhang R, Li Y, Zhang Z. Expanding diversity of susceptible hosts in peste des petits ruminants virus infection and its potential mechanism beyond. Front Vet Sci. 2020;7:66.
Baron MD, Bataille A. A curated dataset of peste des petits ruminants virus sequences for molecular epidemiological analyses. PLoS One. 2022;17(2):e0263616.
Martinez-Gutierrez M, Ruiz-Saenz J. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res. 2016;12:78.
Thomas N, White CL, Saliki J, et al. Canine distemper virus in the sea otter (Enhydra lutris) population in Washington State, USA. J Wildl Dis. 2020;56(4):873-83.
Feng N, Yu Y, Wang T, et al. Fatal canine distemper virus infection of giant pandas in China. Sci Rep. 2016;6:27518.
Watson AM, Cushing AC, Sheldon JD, et al. Natural canine distemper virus infection in Linnaeus's 2-toed sloths (Choloepus didactylus). Vet Pathol. 2020;57(2):311-5.
Lunardi M, Darold GM, Amude AM, et al. Canine distemper virus active infection in order Pilosa, family Myrmecophagidae, species Tamandua tetradactyla. Vet Microbiol. 2018;220:7-11.
Wang R, Wang X, Zhai J, et al. A new canine distemper virus lineage identified from red pandas in China. Transbound Emerg Dis. 2021;69:944.
Debesa Belizário Granjeiro M, Lima Kavasaki M, Morgado TO, et al. First report of a canine morbillivirus infection in a giant anteater (Myrmecophaga tridactyla) in Brazil. Vet Med Sci. 2020;6(3):606-11.
Akdesir E, Origgi FC, Wimmershoff J, Frey J, Frey CF, Ryser-Degiorgis MP. Causes of mortality and morbidity in free-ranging mustelids in Switzerland: necropsy data from over 50 years of general health surveillance. BMC Vet Res. 2018;14(1):195.
Rodríguez-Cabo-Mercado R, Martínez-Hernández F, Aréchiga-Ceballos N, et al. Canine distemper in neotropical procyonids: Molecular evidence, humoral immune response and epidemiology. Virus Res. 2020;290:198164.
Trogu T, Canziani S, Salvato S, et al. Canine distemper outbreaks in wild carnivores in Northern Italy. Viruses. 2021;13(1):99.
Oleaga Á, Vázquez CB, Royo LJ, et al. Canine distemper virus in wildlife in south-western Europe. Transbound Emerg Dis. 2021;69:473.
Gilbert M, Sulikhan N, Uphyrkina O, et al. Distemper, extinction, and vaccination of the Amur tiger. Proc Natl Acad Sci U S A. 2020;117(50):31954-62.
Duque-Valencia J, Forero-Munoz NR, Diaz FJ, Martins E, Barato P, Ruiz-Saenz J. Phylogenetic evidence of the intercontinental circulation of a Canine distemper virus lineage in the Americas. Sci Rep. 2019;9(1):15747.
Piewbang C, Radtanakatikanon A, Puenpa J, Poovorawan Y, Techangamsuwan S. Genetic and evolutionary analysis of a new Asia-4 lineage and naturally recombinant canine distemper virus strains from Thailand. Sci Rep. 2019;9(1):3198.
Bhatt M, Rajak KK, Chakravarti S, et al. Phylogenetic analysis of haemagglutinin gene deciphering a new genetically distinct lineage of canine distemper virus circulating among domestic dogs in India. Transbound Emerg Dis. 2019;66(3):1252-67.
Martella V, Blixenkrone-Møller M, Elia G, et al. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain. Vaccine. 2011;29(6):1222-7.
Jo WK, Peters M, Kydyrmanov A, et al. The canine morbillivirus strain associated with an epizootic in Caspian seals provides new insights into the evolutionary history of this virus. Viruses. 2019;11(10):894.
Wang X, Xu W, Fan K, Chiu HC, Huang C. Codon usage bias in the H gene of canine distemper virus. Microb Pathog. 2020;149:104511.
Duque-Valencia J, Sarute N, Olarte-Castillo XA, Ruiz-Saenz J. Evolution and interspecies transmission of canine distemper virus-an outlook of the diverse evolutionary landscapes of a multi-host virus. Viruses. 2019;11(7):582.
Nikolin VM, Osterrieder K, von Messling V, et al. Antagonistic pleiotropy and fitness trade-offs reveal specialist and generalist traits in strains of canine distemper virus. PLoS One. 2012;7(12):e50955.
Duignan PJ, Van Bressem MF, Baker JD, et al. Phocine distemper virus: current knowledge and future directions. Viruses. 2014;6(12):5093-134.
Ohishi K, Maruyama T, Seki F, Takeda M. Marine morbilliviruses: diversity and interaction with signaling lymphocyte activation molecules. Viruses. 2019;11(7):606.
Esquible JA, Burek-Huntington K, Atkinson S, et al. Pathological findings and survey for pathogens associated with reproductive failure in perinatal Steller sea lions Eumetopias jubatus. Dis Aquat Organ. 2019;137(2):131-44.
Goldstein T, Gill VA, Tuomi P, et al. Assessment of clinical pathology and pathogen exposure in sea otters (Enhydra lutris) bordering the threatened population in Alaska. J Wildl Dis. 2011;47(3):579-92.
Blixenkrone-Moller M, Svansson V, Have P, Botner A, Nielsen J. Infection studies in mink with seal-derived morbillivirus. Arch Virol. 1989;106(1-2):165-70.
Brasseur S, Reijnders PJH, Cremer J, et al. Echoes from the past: regional variations in recovery within a harbour seal population. PLoS One. 2018;13(1):e0189674.
Puryear W, Sawatzki K, Bogomolni A, et al. Longitudinal analysis of pinnipeds in the northwest Atlantic provides insights on endemic circulation of phocine distemper virus. Proc Biol Sci. 2021;288(1962):20211841.
VanWormer E, Mazet JAK, Hall A, et al. Viral emergence in marine mammals in the North Pacific may be linked to Arctic sea ice reduction. Sci Rep. 2019;9(1):15569.
Petrella A, Mazzariol S, Padalino I, et al. Cetacean morbillivirus and toxoplasma gondii co-infection in Mediterranean monk seal pup, Italy. Emerg Infect Dis. 2021;27(4):1237-9.
Padalino I, Di Guardo G, Carbone A, et al. Dolphin morbillivirus in Eurasian otters, Italy. Emerg Infect Dis. 2019;25(2):372-4.
Mazzariol S, Peletto S, Mondin A, et al. Dolphin morbillivirus infection in a captive harbor seal (Phoca vitulina). J Clin Microbiol. 2013;51(2):708-11.
Cerutti F, Giorda F, Grattarola C, et al. Specific capture and whole-genome phylogeography of Dolphin morbillivirus. Sci Rep. 2020;10(1):20831.
Domingo M, Ferrer L, Pumarola M, et al. Morbillivirus in dolphins. Nature. 1990;348(6296):21.
Van Bressem MF, Visser IK, Van de Bildt MW, Teppema JS, Raga JA, Osterhaus AD. Morbillivirus infection in Mediterranean striped dolphins (Stenella coeruleoalba). Vet Rec. 1991;129(21):471-2.
Jacob JM, West KL, Levine G, Sanchez S, Jensen BA. Initial characterization of novel beaked whale morbillivirus in Hawaiian cetaceans. Dis Aquat Organ. 2016;117(3):215-27.
Taubenberger JK, Tsai MM, Atkin TJ, et al. Molecular genetic evidence of a novel morbillivirus in a long-finned pilot whale (Globicephalus melas). Emerg Infect Dis. 2000;6(1):42-5.
Groch KR, Colosio AC, Marcondes MC, et al. Novel cetacean morbillivirus in Guiana dolphin, Brazil. Emerg Infect Dis. 2014;20(3):511-3.
Groch KR, Santos-Neto EB, Díaz-Delgado J, et al. Guiana dolphin unusual mortality event and link to cetacean morbillivirus, Brazil. Emerg Infect Dis. 2018;24(7):1349-54.
West KL, Silva-Krott I, Landrau-Giovannetti N, et al. Novel cetacean morbillivirus in a rare Fraser's dolphin (Lagenodelphis hosei) stranding from Maui, Hawai'i. Sci Rep. 2021;11(1):15986.
Woo PC, Lau SK, Wong BH, et al. Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci U S A. 2012;109(14):5435-40.
Lorusso A, Di Tommaso M, Di Felice E, et al. First report of feline morbillivirus in Europe. Vet Ital. 2015;51(3):235-7.
Furuya T, Sassa Y, Omatsu T, et al. Existence of feline morbillivirus infection in Japanese cat populations. Arch Virol. 2014;159(2):371-3.
Sharp CR, Nambulli S, Acciardo AS, et al. Chronic infection of domestic cats with feline morbillivirus, United States. Emerg Infect Dis. 2016;22(4):760-2.
Darold GM, Alfieri AA, Muraro LS, et al. First report of feline morbillivirus in South America. Arch Virol. 2017;162(2):469-75.
Sieg M, Busch J, Eschke M, et al. A new genotype of feline morbillivirus infects primary cells of the lung, kidney, brain and peripheral blood. Viruses. 2019;11(2):146.
Busch J, Sacristán I, Cevidanes A, et al. High seroprevalence of feline morbilliviruses in free-roaming domestic cats in Chile. Arch Virol. 2021;166(1):281-5.
Busch J, Heilmann RM, Vahlenkamp TW, Sieg M. Seroprevalence of infection with feline morbilliviruses is associated with FLUTD and increased blood creatinine concentrations in domestic cats. Viruses. 2021;13(4):578.
Sieg M, Sacristán I, Busch J, et al. Identification of novel feline paramyxoviruses in Guignas (Leopardus guigna) from Chile. Viruses. 2020;12(12):1397.
Delpeut S, Sawatsky B, Wong XX, Frenzke M, Cattaneo R, von Messling V. Nectin-4 interactions govern measles virus virulence in a new model of pathogenesis, the squirrel monkey (Saimiri sciureus). J Virol. 2017;91(11):e02490-16
Laksono BM, Grosserichter-Wagener C, de Vries RD, et al. In vitro measles virus infection of human lymphocyte subsets demonstrates high susceptibility and permissiveness of both naive and memory B cells. J Virol. 2018;92(8):e00131-18
Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
The Human Protein Atlas. NECTIN4, 2022; cited 2022 August 24. Available from: https://www.proteinatlas.org/ENSG00000143217-NECTIN4/tissue
de Swart RL, Ludlow M, de Witte L, et al. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog. 2007;3(11):e178.
Lemon K, de Vries RD, Mesman AW, et al. Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog. 2011;7(1):e1001263.
Rota PA, Moss WJ, Takeda M, de Swart RL, Thompson KM, Goodson JL. Measles. Nat Rev Dis Primers. 2016;2:16049.
Mina MJ, Kula T, Leng Y, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599-606.
Laksono BM, de Vries RD, Verburgh RJ, et al. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nat Commun. 2018;9(1):4944.
Derakhshani S, Kurz A, Japtok L, et al. Measles virus infection fosters dendritic cell motility in a 3D environment to enhance transmission to target cells in the respiratory epithelium. Front Immunol. 2019;10:1294.
Delpeut S, Noyce RS, Richardson CD. The tumor-associated marker, PVRL4 (nectin-4), is the epithelial receptor for morbilliviruses. Viruses. 2014;6(6):2268-86.
Frenzke M, Sawatsky B, Wong XX, et al. Nectin-4-dependent measles virus spread to the cynomolgus monkey tracheal epithelium: role of infected immune cells infiltrating the lamina propria. J Virol. 2013;87(5):2526-34.
Ludlow M, Lemon K, de Vries RD, et al. Measles virus infection of epithelial cells in the macaque upper respiratory tract is mediated by subepithelial immune cells. J Virol. 2013;87(7):4033-42.
Sawatsky B, Cattaneo R, von Messling V. Canine distemper virus spread and transmission to naive ferrets: selective pressure on signaling lymphocyte activation molecule-dependent entry. J Virol. 2018;92(15):e00669-18
de Vries RD, Ludlow M, de Jong A, et al. Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathog. 2017;13(5):e1006371.
Begum S, Nooruzzaman M, Islam MR, Chowdhury EH. A sequential study on the pathology of peste des petits ruminants and tissue distribution of the virus following experimental infection of black Bengal goats. Front Vet Sci. 2021;8:635671.
Lanszki Z, Zana B, Zeghbib S, Jakab F, Szabo N, Kemenesi G. Prolonged infection of canine distemper virus in a mixed-breed dog. Vet Sci. 2021;8(4):61.
Clarke BD, Islam MR, Yusuf MA, Mahapatra M, Parida S. Molecular detection, isolation and characterization of Peste-des-petits ruminants virus from goat milk from outbreaks in Bangladesh and its implication for eradication strategy. Transbound Emerg Dis. 2018;65(6):1597-604.
Van Bressem MF, Duignan PJ, Banyard A, et al. Cetacean morbillivirus: current knowledge and future directions. Viruses. 2014;6(12):5145-81.
Mira F, Rubio-Guerri C, Purpari G, et al. Circulation of a novel strain of dolphin morbillivirus (DMV) in stranded cetaceans in the Mediterranean Sea. Sci Rep. 2019;9(1):9792.
Balamurugan V, Saravanan P, Sen A, et al. Prevalence of peste des petits ruminants among sheep and goats in India. J Vet Sci. 2012;13(3):279-85.
Evermann JF, Leathers CW, Gorham JR, McKeirnan AJ, Appel MJ. Pathogenesis of two strains of lion (Panthera leo) morbillivirus in ferrets (Mustela putorius furo). Vet Pathol. 2001;38(3):311-6.
Laksono BM, Fortugno P, Nijmeijer BM, et al. Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathog. 2020;16(10):e1008253.
Sawatsky B, Wong XX, Hinkelmann S, Cattaneo R, von Messling V. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression. J Virol. 2012;86(7):3658-66.
OIE. Technical Disease Cards. PESTE_DES_PETITS_RUMINANTS. 2020; cited August 24. Available from: https://www.woah.org/en/document/peste_des_petits_ruminants/
Morris SE, Yates AJ, de Swart RL, et al. Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathog. 2018;14(12):e1007493.
Kannan A, Tsoi D, Xie Y, Horst C, Collins J, Flaxman A. Cost-effectiveness of vitamin A supplementation among children in three sub-Saharan African countries: an individual-based simulation model using estimates from Global Burden of Disease 2019. PLoS One. 2022;17(4):e0266495.
McDermid KR, Snyman A, Verreynne FJ, Carroll JP, Penzhorn BL, Yabsley MJ. Surveillance for viral and parasitic pathogens in a vulnerable African lion (Panthera leo) population in the northern Tuli game reserve, Botswana. J Wildl Dis. 2017;53(1):54-61.
Marescot L, Benhaiem S, Gimenez O, et al. Social status mediates the fitness costs of infection with canine distemper virus in Serengeti spotted hyenas. Funct Ecol. 2018;32(5):1237-50.
Ogbuanu IU, Zeko S, Chu SY, et al. Maternal, fetal, and neonatal outcomes associated with measles during pregnancy: Namibia, 2009-2010. Clin Infect Dis. 2014;58(8):1086-92.
Kardjadj M, Kouidri B, Metref D, Luka PD, Ben-Mahdi MH. Abortion and various associated risk factors in small ruminants in Algeria. Prev Vet Med. 2016;123:97-101.
Sahoo M, Dinesh M, Thakor JC, et al. Neuropathology mediated through caspase dependent extrinsic pathway in goat kids naturally infected with PPRV. Microb Pathog. 2020;140:103949.
Shirogane Y, Takemoto R, Suzuki T, et al. CADM1 and CADM2 trigger neuropathogenic measles virus-mediated membrane fusion by acting in cis. J Virol. 2021;95(14):e0052821.
Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y, Shirogane Y. Short-stalk isoforms of CADM1 and CADM2 trigger neuropathogenic measles virus-mediated membrane fusion by interacting with the viral hemagglutinin. J Virol. 2022;96(3):e0194921.
Watanabe S, Shirogane Y, Suzuki SO, Ikegame S, Koga R, Yanagi Y. Mutant fusion proteins with enhanced fusion activity promote measles virus spread in human neuronal cells and brains of suckling hamsters. J Virol. 2013;87(5):2648-59.
Mathieu C, Ferren M, Jurgens E, et al. Measles virus bearing measles inclusion body encephalitis-derived fusion protein is pathogenic after infection via the respiratory route. J Virol. 2019;93(8):e01862-18
Park ES, Suzuki M, Kimura M, et al. Epidemiological and pathological study of feline morbillivirus infection in domestic cats in Japan. BMC Vet Res. 2016;12(1):228.
Sutummaporn K, Suzuki K, Machida N, et al. Association of feline morbillivirus infection with defined pathological changes in cat kidney tissues. Vet Microbiol. 2019;228:12-9.
Stranieri A, Lauzi S, Dallari A, et al. Feline morbillivirus in Northern Italy: prevalence in urine and kidneys with and without renal disease. Vet Microbiol. 2019;233:133-9.
McCallum KE, Stubbs S, Hope N, et al. Detection and seroprevalence of morbillivirus and other paramyxoviruses in geriatric cats with and without evidence of azotemic chronic kidney disease. J Vet Intern Med. 2018;32(3):1100-8.
Piewbang C, Wardhani SW, Dankaona W, et al. Feline morbillivirus-1 in dogs with respiratory diseases. Transbound Emerg Dis. 2021;69:175.
Sakaguchi S, Koide R, Miyazawa T. In vitro host range of feline morbillivirus. J Vet Med Sci. 2015;77(11):1485-7.
Arruda B, Shen H, Zheng Y, Li G. Novel morbillivirus as putative cause of fetal death and encephalitis among swine. Emerg Infect Dis. 2021;27(7):1858-66.
Lee B, Ikegame S, Carmichael J, et al. Zoonotic potential of a novel bat morbillivirus. Res Sq. 2021. rs.3.rs-926789. https://doi.org/10.21203/rs.3.rs-926789/v1
Vanmechelen B, Meurs S, Horemans M, et al. The characterization of multiple novel paramyxovirus species highlights the diverse nature of the subfamily Orthoparamyxovirinae. bioRxiv. 2022. 2022.03.10.483612. https://doi.org/10.1101/2022.03.10.483612
Hashiguchi T, Fukuda Y, Matsuoka R, et al. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors. Proc Natl Acad Sci U S A. 2018;115(10):2496-501.
Kalbermatter D, Shrestha N, Gall FM, et al. Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ectodomain. J Struct Biol X. 2020;4:100021.
Navaratnarajah CK, Kumar S, Generous A, Apte-Sengupta S, Mateo M, Cattaneo R. The measles virus hemagglutinin stalk: structures and functions of the central fusion activation and membrane-proximal segments. J Virol. 2014;88(11):6158-67.
Hashiguchi T, Kajikawa M, Maita N, et al. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc Natl Acad Sci U S A. 2007;104(49):19535-40.
Zhang X, Lu G, Qi J, et al. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat Struct Mol Biol. 2013;20(1):67-72.
Hashiguchi T, Ose T, Kubota M, et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol. 2011;18(2):135-41.
Santiago C, Celma ML, Stehle T, Casasnovas JM. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat Struct Mol Biol. 2010;17(1):124-9.
Xu F, Tanaka S, Watanabe H, et al. Computational analysis of the interaction energies between amino acid residues of the measles virus hemagglutinin and its receptors. Viruses. 2018;10(5):236.
Mateo M, Navaratnarajah CK, Syed S, Cattaneo R. The measles virus hemagglutinin beta-propeller head beta4-beta5 hydrophobic groove governs functional interactions with nectin-4 and CD46 but not those with the signaling lymphocytic activation molecule. J Virol. 2013;87(16):9208-16.
Navaratnarajah CK, Oezguen N, Rupp L, et al. The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nat Struct Mol Biol. 2011;18(2):128-34.
Ono N, Tatsuo H, Tanaka K, Minagawa H, Yanagi Y. V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol. 2001;75(4):1594-600.
Delpeut S, Noyce RS, Richardson CD. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread. Virology. 2014;454-455:109-17.
Otsuki N, Sekizuka T, Seki F, et al. Canine distemper virus with the intact C protein has the potential to replicate in human epithelial cells by using human nectin4 as a receptor. Virology. 2013;435(2):485-92.
Abdullah N, Kelly JT, Graham SC, et al. Structure-guided identification of a Nonhuman morbillivirus with zoonotic potential. J Virol. 2018;92(23):e01248-18
Seki F, Ohishi K, Maruyama T, Takeda M. Phocine distemper virus uses phocine and other animal SLAMs as a receptor but not human SLAM. Microbiol Immunol. 2020;64(8):578-83.
Fukuhara H, Ito Y, Sako M, et al. Specificity of morbillivirus hemagglutinins to recognize SLAM of different species. Viruses. 2019;11(8):761.
Yadav AK, Rajak KK, Kumar A, et al. Replication competence of canine distemper virus in cell lines expressing signaling lymphocyte activation molecule (SLAM) of goat, sheep and dog origin. Microb Pathog. 2021;156:104940.
Zinzula L, Mazzariol S, Di Guardo G. Molecular signatures in cetacean morbillivirus and host species proteomes: unveiling the evolutionary dynamics of an enigmatic pathogen? Microbiol Immunol. 2022;66(2):52-8.
Weckworth JK, Davis BW, Dubovi E, et al. Cross-species transmission and evolutionary dynamics of canine distemper virus during a spillover in African lions of Serengeti National Park. Mol Ecol. 2020;29(22):4308-21.