Evaluation of the microencapsulation process of conidia of Trichoderma asperellum by spray drying.

Biological control Central rotational compound design Microparticle Powder Wall material

Journal

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
ISSN: 1678-4405
Titre abrégé: Braz J Microbiol
Pays: Brazil
ID NLM: 101095924

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 19 06 2022
accepted: 20 09 2022
pubmed: 30 9 2022
medline: 24 11 2022
entrez: 29 9 2022
Statut: ppublish

Résumé

Microencapsulation of microorganisms has been studied to increase product shelf life and stability to enable the application in sustainable agriculture. In this study, the microencapsulation of Trichoderma asperellum conidia by spray drying (SD) was evaluated. The objective was to assess the effect of drying air temperature and wall material (maltodextrin DE20, MD20) concentration on the microencapsulation and to identify the optimum conditions to produce, in high yield, microparticles with low moisture, high conidial viability and conidial survival. Microparticles were characterized in terms of morphology, particle size, and shelf life. A central composite rotatable design (CCRD) was used to evaluate the effect of operating parameters on drying yield (DY), moisture content, conidial viability (CV), and conidial survival (SP). Microencapsulation experiments were carried out under optimum conditions to validate the obtained model. The optimum temperature and MD20/conidia dry weight ratios were 80 °C and 1:4.5, respectively, which afforded a drying yield of 63.85 ± 0.86%, moisture content of 4.92 ± 0.07%, conidial viability of 87.10 ± 1.16%, and conidial survival of 85.78 ± 2.88%. Microencapsulation by spray drying using MD20 as wall material extended the viability of conidia stored at 29 °C compared with the control. The mathematical models accurately predicted all the variables studied, and the association of the microencapsulation technique using DE20 maltodextrin was able to optimize the process and increase the product's shelf life. It was also concluded that high inlet air temperatures negatively affected conidia survival, especially above 100 °C.

Identifiants

pubmed: 36173601
doi: 10.1007/s42770-022-00832-z
pii: 10.1007/s42770-022-00832-z
pmc: PMC9679129
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1871-1880

Informations de copyright

© 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.

Références

Schmoll M, Schuster A (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799. https://doi.org/10.1007/s00253-010-2632-1
doi: 10.1007/s00253-010-2632-1 pubmed: 20461510 pmcid: 2886115
Silvestri L, Silvestri C, Forcina A, De Luca C (2022) A review of energy-based indicators for assessing sustainability and circular economy in the agri-food production. Procedia Comput Sci 200:1756–1765. https://doi.org/10.1016/j.procs.2022.01.376
doi: 10.1016/j.procs.2022.01.376
Wang X, Liu FL, Jiang D (2017) Priming: a promising strategy for crop production in response to future climate. J Integr Agric 16(12):2709–2716. https://doi.org/10.1016/S2095-3119(17)61786-6
doi: 10.1016/S2095-3119(17)61786-6
Zhao J, Bindi M, Eitzinger J, Ferrise R, Gaile Z, et al (2022) Priority for climate adaptation measures in European crop production systems. Eur J Agron 138. https://doi.org/10.1016/j.eja.2022.126516
Bacior S, Prus B (2018) Infrastructure development and its influence on agricultural land and regional sustainable development. Ecol Inform 44:82–93. https://doi.org/10.1016/j.ecoinf.2018.02.001
doi: 10.1016/j.ecoinf.2018.02.001
TariqJaveed M, Farooq T, Al-Hazmi AS, et al (2021) Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. J Invertebr Pathol 183. https://doi.org/10.1016/j.jip.2021.107626
Zhang F, Chen C, Zhang F et al (2017) Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean. J Plant Physiol 210:84–94. https://doi.org/10.1016/j.jplph.2016.10.012
doi: 10.1016/j.jplph.2016.10.012 pubmed: 28135657
Chen JL, Sun SZ, Miao CP et al (2016) Endophytic Trichoderma gamsii YIM PH30019: A promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40(4):315–324. https://doi.org/10.1016/j.jgr.2015.09.006
doi: 10.1016/j.jgr.2015.09.006 pubmed: 27746683
Szczech M, Nawrocka J, Felczyński K et al (2017) Trichoderma atroviride TRS25 isolate reduces downy mildew and induces systemic defence responses in cucumber in field conditions. Sci Hortic (Amsterdam) 224:17–26. https://doi.org/10.1016/j.scienta.2017.05.035
doi: 10.1016/j.scienta.2017.05.035
Vinodkumar S, Indumathi T, Nakkeeran S (2017) Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biol Control 113:58–64. https://doi.org/10.1016/j.biocontrol.2017.07.001
doi: 10.1016/j.biocontrol.2017.07.001
Jin X, Custis D (2011) Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biol Control 56(2):202–208. https://doi.org/10.1016/j.biocontrol.2010.11.008
doi: 10.1016/j.biocontrol.2010.11.008
Muñoz-Celaya AL, Ortiz-García M, Vernon-Carter EJ, Jauregui-Rincón J, Galindo E, Serrano-Carreón L (2012) Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydr Polym 88(4):1141–1148. https://doi.org/10.1016/j.carbpol.2011.12.030
doi: 10.1016/j.carbpol.2011.12.030
Locatelli GO, dos Santos GF, Botelho PS, Finkler CLL, Bueno LA (2018) Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biol Control 117:21–29. https://doi.org/10.1016/j.biocontrol.2017.08.020
doi: 10.1016/j.biocontrol.2017.08.020
Broeckx G, Vandenheuvel D, Henkens T et al (2017) Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. Int J Pharm 534(1–2):35–41. https://doi.org/10.1016/j.ijpharm.2017.09.075
doi: 10.1016/j.ijpharm.2017.09.075 pubmed: 28986319
Reyes V, Chotiko A, Chouljenko A et al (2018) Influence of wall material on production of spray dried Lactobacillus plantarum nrrl b-4496 and its viability at different storage conditions. Dry Technol 36(14):1738–1748. https://doi.org/10.1080/07373937.2017.1423324
doi: 10.1080/07373937.2017.1423324
Conceição RCN, Batista RD et al (2021) Effect of co-encapsulation using a calcium alginate matrix and fructooligosaccharides with gelatin coating on the survival of Lactobacillus paracasei cells. Brazilian J Microbiol 52:1503–1512. https://doi.org/10.1007/s42770-021-00484-5
doi: 10.1007/s42770-021-00484-5
Ma X, Wang X, Cheng J et al (2015) Microencapsulation of Bacillus subtilis B99–2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol Control 90:34–41. https://doi.org/10.1016/j.biocontrol.2015.05.013
doi: 10.1016/j.biocontrol.2015.05.013
Braga ABAC, Costa CJM, Pomella AWV, Ribeiro EJ, Santos LD, Zotarelli MF (2019) Evaluation of lethality temperature and use of different wall materials in the microencapsulation process of Trichoderma asperellum conidias by spray drying. Powder Technol 347:199–206. https://doi.org/10.1016/j.powtec.2019.02.037
doi: 10.1016/j.powtec.2019.02.037
El-Sayed HS, Salama HH, Edris AE (2020) Survival of Lactobacillus helveticus CNRZ32 in spray dried functional yogurt powder during processing and storage. J Saudi Soc Agric Sci 19(7):461–467. https://doi.org/10.1016/j.jssas.2020.08.003
doi: 10.1016/j.jssas.2020.08.003
Jafari S, JafariEbrahimi SMM, Kijpatanasilp I, Assatarakul K (2022) A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: characterization, food application and in vitro gastrointestinal digestion. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2022.108068 (In Press Journal Pre-proof)
doi: 10.1016/j.foodhyd.2022.108068
Cotabarren IM, Bertín D, Razuc M, Ramírez-Rigo MV, Piña J (2018) Modelling of the spray drying process for particle design. Chem Eng Res Des 132:1091–1104. https://doi.org/10.1016/j.cherd.2018.01.012
doi: 10.1016/j.cherd.2018.01.012
Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56(1):27–35. https://doi.org/10.1016/j.mimet.2003.09.002
doi: 10.1016/j.mimet.2003.09.002 pubmed: 14706748
Chávez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol 25(7–8):1193–1201. https://doi.org/10.1080/07373930701438576
doi: 10.1080/07373930701438576
Koc B, Yilmazer MS, Balkir P, Ertekin FK (2010) Spray drying of yogurt: optimization of process conditions for improving viability and other quality attributes. Dry Technol 28(4):495–507. https://doi.org/10.1080/07373931003613809
doi: 10.1080/07373931003613809
Anekella K, Orsat V (2013) Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Sci Technol 50(1):17–24. https://doi.org/10.1016/j.lwt.2012.08.003
doi: 10.1016/j.lwt.2012.08.003
Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I (2013) Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L acidophilus NCIMB 701748. Dry Technol 31(11):1274–1283. https://doi.org/10.1080/07373937.2013.788509
doi: 10.1080/07373937.2013.788509
Da Costa JMG, Silva EK, Toledo Hijo AAC et al (2015) Microencapsulation of Swiss cheese bioaroma by spray-drying: process optimization and characterization of particles. Powder Technol 274:296–304. https://doi.org/10.1016/j.powtec.2015.01.037
doi: 10.1016/j.powtec.2015.01.037
Box GE, Hunter HG, Hunter JS (2005) Statistics for experimenters: design, innovation, and discovery. John Wiley & Sons.
A.O.A.C (2005) (Association of Official Analytical Chemists). Official methods of analysis of the Association Of Official Analytical Chemists. 18th ed.
Danielson RM, Davey CB (1973) Effects of nutrients and acidity on phialospore germination of Trichoderma in vitro. Soil Biol Biochem 5(5):517–524. https://doi.org/10.1016/0038-0717(73)90041-2
doi: 10.1016/0038-0717(73)90041-2
Milner RJ, Huppatz RJ, Swaris SC (1991) A new method for assessment of germination of Metarhizium conidia. J Invertebr Pathol 57(1):121–123. https://doi.org/10.1016/0022-2011(91)90048-U
doi: 10.1016/0022-2011(91)90048-U
Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14(6):505–515. https://doi.org/10.1016/j.idairyj.2003.10.008
doi: 10.1016/j.idairyj.2003.10.008
Zhou X, Chen S, Yu Z (2004) Effects of spray drying parameters on the processing of a fermentation liquor. Biosyst Eng 88(2):193–199. https://doi.org/10.1016/j.biosystemseng.2004.02.004
doi: 10.1016/j.biosystemseng.2004.02.004
LeClair DA, Cranston ED, Xing Z, Thompson MR (2016) Optimization of spray drying conditions for yield, particle size and biological activity of thermally stable viral vectors. Pharm Res 33(11):2763–2776. https://doi.org/10.1007/s11095-016-2003-4
doi: 10.1007/s11095-016-2003-4 pubmed: 27450412
Braga ABAC, Costa CJM, Pomella AWV, Ribeiro EJ, Santos LD, Zotarelli MF (2019) Evaluation of lethality temperature and use of different wall materials in the microencapsulation process of Trichoderma asperellum conidias by spray drying. Powder Technology 347:199–206. https://doi.org/10.1016/j.powtec.2019.02.037
doi: 10.1016/j.powtec.2019.02.037
Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74(1–2):79–86. https://doi.org/10.1016/S0168-1605(01)00733-4
doi: 10.1016/S0168-1605(01)00733-4 pubmed: 11929173
Favaro-Trindade CS, Santana AS, Monterrey-Quintero ES, Trindade MA, Netto FM (2010) The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll 24(4):336–340. https://doi.org/10.1016/j.foodhyd.2009.10.012
doi: 10.1016/j.foodhyd.2009.10.012
Rodríguez-Huezo ME, Durán-Lugo R, Prado-Barragán LA et al (2007) Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res Int 40(10):1299–1306. https://doi.org/10.1016/j.foodres.2007.09.001
doi: 10.1016/j.foodres.2007.09.001
Masters K (1991) Spray Drying Handbook, fifty. Longman, New York
Harman GE, Custis DB (2015) Formulations of viable microorganisms and their methods of production and use. Published online.42.
EFSA (European Food Safety Authority) (2013) Conclusion on the peer review of the pesticide risk assessment of the active substance Trichodermagamsii ICC080. EFSA Journal. https://doi.org/10.2903/j.efsa.2013.3062
doi: 10.2903/j.efsa.2013.3062
Paéz R, Lavari L, Vinderola G et al (2012) Effect of heat treatment and spray drying on Lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res Int 48(2):748–754. https://doi.org/10.1016/j.foodres.2012.06.018
doi: 10.1016/j.foodres.2012.06.018
Barbosa J, Borges S, Teixeira P (2016) Effect of different conditions of growth and storage on the cell counts of two lactic acid bacteria after spray drying in orange juice. Beverages 2(2):8. https://doi.org/10.3390/beverages2020008
doi: 10.3390/beverages2020008
Domingues MVPF, de Moura KE, Salomão D, Elias LM, Patricio FRA (2016) Effect of temperature on mycelial growth of Trichoderma, Sclerotinia minor and S sclerotiorum, as well as on mycoparasitism. Summa Phytopathol 42(3):222–227. https://doi.org/10.1590/0100-5405/2146
doi: 10.1590/0100-5405/2146
Semyonov D, Ramon O, Shimoni E (2011) Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT - Food Sci Technol 44(9):1844–1852. https://doi.org/10.1016/j.lwt.2011.03.021
doi: 10.1016/j.lwt.2011.03.021

Auteurs

Alinne Brandão Andalécio Camargos Braga (ABAC)

Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil.

Cleiver Junio Martins Costa (CJM)

Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil.

Eloízio Júlio Ribeiro (EJ)

Faculty of Chemical Engineering, Federal University of Uberlândia, Uberlândia, MG, Brazil.

Marta Fernanda Zotarelli (MF)

Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil.

Líbia Diniz Santos (LD)

Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil. libia@ufu.br.

Articles similaires

Meiosis Schizosaccharomyces Schizosaccharomyces pombe Proteins Spores, Fungal

Emergence of synchronized growth oscillations in filamentous fungi.

Praneet Prakash, Xue Jiang, Luke Richards et al.
1.00
Models, Biological Spores, Fungal Basidiomycota Fungi
Gene Expression Profiling Metabolome Cordyceps Transcriptome Hypocreales
Alternaria Temperature Spores, Fungal Water Germination

Classifications MeSH