Plasma levels of interleukin-8 and response to paroxetine in patients with major depressive disorder.
immune dysregulation
interleukin-8
major depressive disorder
paroxetine
treatment outcome
Journal
Human psychopharmacology
ISSN: 1099-1077
Titre abrégé: Hum Psychopharmacol
Pays: England
ID NLM: 8702539
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
revised:
18
08
2022
received:
30
04
2022
accepted:
27
09
2022
pubmed:
5
10
2022
medline:
1
11
2022
entrez:
4
10
2022
Statut:
ppublish
Résumé
Immune dysregulation plays a key role in major depressive disorder (MDD). However, little is known about the complicated involvement of various interleukins in MDD. This study was performed to investigate the correlation between plasma interleukin-8 (IL-8) levels and treatment outcome of paroxetine (a selective serotonin reuptake inhibitor) in patients with MDD. A total of 115 hospitalized patients (36 males and 79 females), aged from 18 to 72 years, were enrolled. Plasma levels of IL-8 were measured before treatment initiation (baseline) and at 8 weeks after oral paroxetine treatment. Efficacy of paroxetine was evaluated by use of the Hamilton Depression Rating Scale (HAMD-17). Baseline IL-8 levels were compared between responders and non-responders to paroxetine treatment. Plasma IL-8 levels decreased significantly after an 8-week antidepressant treatment in responders, in association with a dramatic decrease in HAMD-17 scores. In non-responders, plasma IL-8 levels did not change significantly at 8 weeks after antidepressant treatment. Baseline plasma IL-8 levels were found to be significantly lower in responders than in non-responders, showing a correlation between IL-8 and antidepressant response to paroxetine. These results indicate that plasma IL-8 levels were related to treatment outcome of paroxetine, and therefore suggest that IL-8 could be a promising predicator of treatment response in individual patients with MDD.
Substances chimiques
Paroxetine
41VRH5220H
Interleukin-8
0
Serotonin Uptake Inhibitors
0
Antidepressive Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2855Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Pub.
Baggiolini, M., & Clark-Lewis, I. (1992). Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters, 307(1), 97-101. https://doi.org/10.1016/0014-5793(92)80909-z
Brunoni, A. R., Padberg, F., Vieira, E. L. M., Teixeira, A. L., Carvalho, A. F., Lotufo, P. A., Gattaz, W. F., & Bensenor, I. M. (2018). Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 86, 211-217. https://doi.org/10.1016/j.pnpbp.2018.06.003
Chen, C. Y., Yeh, Y. W., Kuo, S. C., Liang, C. S., Ho, P. S., Huang, C. C., Yen, C. H., Shyu, J. F., Lu, R. B., & Huang, S. Y. (2018). Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology, 87, 108-118. https://doi.org/10.1016/j.psyneuen.2017.10.009
Chung, Y. E., Chen, H. C., Chou, H. L., Chen, I. M., Lee, M. S., Chuang, L. C., Liu, Y. W., Lu, M. L., Chen, C. H., Wu, C. S., Huang, M. C., Liao, S. C., Ni, Y. H., Lai, M. S., Shih, W. L., & Kuo, P. H. (2019). Exploration of microbiota targets for major depressive disorder and mood related traits. Journal of Psychiatric Research, 111, 74-82. https://doi.org/10.1016/j.jpsychires.2019.01.016
Corlier, J., Tadayonnejad, R., Wilson, A. C., Lee, J. C., Marder, K. G., Ginder, N. D., Wilke, S. A., Levitt, J., Krantz, D., & Leuchter, A. F. (2021). Repetitive transcranial magnetic stimulation treatment of major depressive disorder and comorbid chronic pain: Response rates and neurophysiologic biomarkers. Psychological Medicine, 1-10. https://doi.org/10.1017/S0033291721002178
Dong, Z., Kuang, W., Shen, X., & Tian, L. (2021). Plasma levels of interleukin-6 and antidepressant response to paroxetine in Chinese depressive patients. Psychiatry Research, 297, 113723. https://doi.org/10.1016/j.psychres.2021.113723
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctot, K. L. (2010). A meta-analysis of cytokines in major depression. Biological Psychiatry, 67(5), 446-457. https://doi.org/10.1016/j.biopsych.2009.09.033
Durairaj, H., Steury, M. D., & Parameswaran, N. (2015). Paroxetine differentially modulates LPS-induced TNFalpha and IL-6 production in mouse macrophages. International Immunopharmacology, 25(2), 485-492. https://doi.org/10.1016/j.intimp.2015.02.029
Duverneuil, C., de la Grandmaison, G. L., de Mazancourt, P., & Alvarez, J. C. (2003). A high-performance liquid chromatography method with photodiode-array UV detection for therapeutic drug monitoring of the nontricyclic antidepressant drugs. Therapeutic Drug Monitoring, 25(5), 565-573. https://doi.org/10.1097/00007691-200310000-00005
Elderon, L., & Whooley, M. A. (2013). Depression and cardiovascular disease. Progress in Cardiovascular Diseases, 55(6), 511-523. https://doi.org/10.1016/j.pcad.2013.03.010
Eller, T., Vasar, V., Shlik, J., & Maron, E. (2009). Effects of bupropion augmentation on pro-inflammatory cytokines in escitalopram-resistant patients with major depressive disorder. Journal of Psychopharmacology, 23(7), 854-858. https://doi.org/10.1177/0269881108091077
Galecki, P., & Talarowska, M. (2018). Inflammatory theory of depression. Psychiatria Polska, 52(3), 437-447. https://doi.org/10.12740/PP/76863
Garin, E. H., Blanchard, D. K., Matsushima, K., & Djeu, J. Y. (1994). IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney International, 45(5), 1311-1317. https://doi.org/10.1038/ki.1994.171
Gaynes, B. N., Warden, D., Trivedi, M. H., Wisniewski, S. R., Fava, M., & Rush, A. J. (2009). What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatric Services, 60(11), 1439-1445. https://doi.org/10.1176/ps.2009.60.11.1439
Gross, A. L., Gallo, J. J., & Eaton, W. W. (2010). Depression and cancer risk: 24 years of follow-up of the Baltimore Epidemiologic Catchment Area sample. Cancer Causes & Control, 21(2), 191-199. https://doi.org/10.1007/s10552-009-9449-1
Hammar, A., Ronold, E. H., & Rekkedal, G. A. (2022). Cognitive Impairment and neurocognitive profiles in major depression-a clinical perspective. Frontiers in Psychiatry, 13, 764374. https://doi.org/10.3389/fpsyt.2022.764374
Hirschfeld, R. M. (2014). Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders, 169(Suppl 1), S12-S16. https://doi.org/10.1016/S0165-0327(14)70004-7
Hou, R., Ye, G., Liu, Y., Chen, X., Pan, M., Zhu, F., Fu, J., Fu, T., Liu, Q., Gao, Z., Baldwin, D. S., & Tang, Z. (2019). Effects of SSRIs on peripheral inflammatory cytokines in patients with generalized anxiety disorder. Brain, Behavior, and Immunity, 81, 105-110. https://doi.org/10.1016/j.bbi.2019.06.001
Keller, M. B. (2003). Past, present, and future directions for defining optimal treatment outcome in depression: Remission and beyond. JAMA, 289(23), 3152-3160. https://doi.org/10.1001/jama.289.23.3152
Kessler, R. C., & Bromet, E. J. (2013). The epidemiology of depression across cultures. Annual Review of Public Health, 34(1), 119-138. https://doi.org/10.1146/annurev-publhealth-031912-114409
Krogh, J., Benros, M. E., Jorgensen, M. B., Vesterager, L., Elfving, B., & Nordentoft, M. (2014). The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain, Behavior, and Immunity, 35, 70-76. https://doi.org/10.1016/j.bbi.2013.08.014
Kronfol, Z., & Remick, D. G. (2000). Cytokines and the brain: Implications for clinical psychiatry. American Journal of Psychiatry, 157(5), 683-694. https://doi.org/10.1176/appi.ajp.157.5.683
Liu, C., Cui, G., Zhu, M., Kang, X., & Guo, H. (2014). Neuroinflammation in Alzheimer's disease: Chemokines produced by astrocytes and chemokine receptors. International Journal of Clinical and Experimental Pathology, 7(12), 8342-8355.
Liu, J. J., Wei, Y. B., Strawbridge, R., Bao, Y., Chang, S., Shi, L., Que, J., Gadad, B. S., Trivedi, M. H., Kelsoe, J. R., & Lu, L. (2020). Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Molecular Psychiatry, 25(2), 339-350. https://doi.org/10.1038/s41380-019-0474-5
Loftis, J. M., Huckans, M., & Morasco, B. J. (2010). Neuroimmune mechanisms of cytokine-induced depression: Current theories and novel treatment strategies. Neurobiology of Disease, 37(3), 519-533. https://doi.org/10.1016/j.nbd.2009.11.015
Maes, M. (1999). Major depression and activation of the inflammatory response system. Advances in Experimental Medicine and Biology, 461, 25-46. https://doi.org/10.1007/978-0-585-37970-8_2
Maes, M. (2011). Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(3), 664-675. https://doi.org/10.1016/j.pnpbp.2010.06.014
Maes, M., Bosmans, E., De Jongh, R., Kenis, G., Vandoolaeghe, E., & Neels, H. (1997). Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine, 9(11), 853-858. https://doi.org/10.1006/cyto.1997.0238
Messay, B., Lim, A., & Marsland, A. L. (2012). Current understanding of the bi-directional relationship of major depression with inflammation. Biology of Mood & Anxiety Disorders, 2(1), 4. https://doi.org/10.1186/2045-5380-2-4
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732-741. https://doi.org/10.1016/j.biopsych.2008.11.029
Misiak, B., Bartoli, F., Carra, G., Malecka, M., Samochowiec, J., Jarosz, K., Banik, A., & Stanczykiewicz, B. (2020). Chemokine alterations in bipolar disorder: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 88, 870-877. https://doi.org/10.1016/j.bbi.2020.04.013
Mohammadi, A., Rashidi, E., & Amooeian, V. G. (2018). Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Research, 265, 25-38. https://doi.org/10.1016/j.psychres.2018.04.036
Mosiolek, A., Pieta, A., Jakima, S., Zborowska, N., Mosiolek, J., & Szulc, A. (2021). Effects of antidepressant treatment on peripheral biomarkers in patients with major depressive disorder (MDD). Journal of Clinical Medicine, 10(8), 1706. https://doi.org/10.3390/jcm10081706
Nazimek, K., Strobel, S., Bryniarski, P., Kozlowski, M., Filipczak-Bryniarska, I., & Bryniarski, K. (2017). The role of macrophages in anti-inflammatory activity of antidepressant drugs. Immunobiology, 222(6), 823-830. https://doi.org/10.1016/j.imbio.2016.07.001
Nobis, A., Zalewski, D., & Waszkiewicz, N. (2020). Peripheral markers of depression. Journal of Clinical Medicine, 9(12), 3793. https://doi.org/10.3390/jcm9123793
Ohgi, Y., Futamura, T., Kikuchi, T., & Hashimoto, K. (2013). Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacology Biochemistry and Behavior, 103(4), 853-859. https://doi.org/10.1016/j.pbb.2012.12.003
Oyamada, H. A. A., Cafasso, M., Vollmer, C. M., Alvim, F., Lopes, L. M., Castro, C., Sacramento, P. M., Sales, M. C., Kasahara, T. M., Linhares, U. C., & Bento, C. A. M. (2021). Major depressive disorder enhances Th2 and Th17 cytokines in patients suffering from allergic rhinitis and asthma. International Archives of Allergy and Immunology, 182(12), 1155-1168. https://doi.org/10.1159/000517478
Patel, A. (2013). Review: The role of inflammation in depression. Psychiatria Danubina, 25(Suppl 2), S216-S223.
Pitsillou, E., Bresnehan, S. M., Kagarakis, E. A., Wijoyo, S. J., Liang, J., Hung, A., & Karagiannis, T. C. (2020). The cellular and molecular basis of major depressive disorder: Towards a unified model for understanding clinical depression. Molecular Biology Reports, 47(1), 753-770. https://doi.org/10.1007/s11033-019-05129-3
Raison, C. L., & Miller, A. H. (2011). Is depression an inflammatory disorder? Current Psychiatry Reports, 13(6), 467-475. https://doi.org/10.1007/s11920-011-0232-0
Rawdin, B. J., Mellon, S. H., Dhabhar, F. S., Epel, E. S., Puterman, E., Su, Y., Burke, H. M., Reus, V. I., Rosser, R., Hamilton, S. P., Nelson, J. C., & Wolkowitz, O. M. (2013). Dysregulated relationship of inflammation and oxidative stress in major depression. Brain, Behavior, and Immunity, 31, 143-152. https://doi.org/10.1016/j.bbi.2012.11.011
Ricken, R., Busche, M., Schlattmann, P., Himmerich, H., Bopp, S., Bschor, T., Richter, C., Stamm, T. J., Heinz, A., Hellweg, R., Lang, U. E., & Adli, M. (2018). Cytokine serum levels remain unchanged during lithium augmentation of antidepressants in major depression. Journal of Psychiatric Research, 96, 203-208. https://doi.org/10.1016/j.jpsychires.2017.10.002
Salehpour, F., & Rasta, S. H. (2017). The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Reviews in the Neurosciences, 28(4), 441-453. https://doi.org/10.1515/revneuro-2016-0087
Shen, Y., Li, Y., Shi, L., Liu, M., Wu, R., Xia, K., Zhang, F., Ou, J., & Zhao, J. (2021). Autism spectrum disorder and severe social impairment associated with elevated plasma interleukin-8. Pediatric Research, 89(3), 591-597. https://doi.org/10.1038/s41390-020-0910-x
Smith, R. S. (1991). The macrophage theory of depression. Medical Hypotheses, 35(4), 298-306. https://doi.org/10.1016/0306-9877(91)90272-z
Smyth, M. J., Zachariae, C. O., Norihisa, Y., Ortaldo, J. R., Hishinuma, A., & Matsushima, K. (1991). IL-8 gene expression and production in human peripheral blood lymphocyte subsets. Journal of Immunology, 146(11), 3815-3823.
Tsai, S. J. (2021). Role of interleukin 8 in depression and other psychiatric disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 106, 110173. https://doi.org/10.1016/j.pnpbp.2020.110173
Tynan, R. J., Weidenhofer, J., Hinwood, M., Cairns, M. J., Day, T. A., & Walker, F. R. (2012). A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain, Behavior, and Immunity, 26(3), 469-479. https://doi.org/10.1016/j.bbi.2011.12.011
Vallerand, I. A., Lewinson, R. T., Frolkis, A. D., Lowerison, M. W., Kaplan, G. G., Swain, M. G., Bulloch, A. G. M., Patten, S. B., & Barnabe, C. (2018). Depression as a risk factor for the development of rheumatoid arthritis: A population-based cohort study. RMD Open, 4(2), e000670. https://doi.org/10.1136/rmdopen-2018-000670
Zhang, N., Yao, L., Wang, P., & Liu, Z. (2021). Immunoregulation and antidepressant effect of ketamine. Translational Neuroscience, 12(1), 218-236. https://doi.org/10.1515/tnsci-2020-0167
Zhu, Z. H., Song, X. Y., Man, L. J., Chen, P., Tang, Z., Li, R. H., Ji, C. F., Dai, N. B., Liu, F., Wang, J., Zhang, J., Jia, Q. F., & Hui, L. (2022). Comparisons of serum interleukin-8 levels in major depressive patients with drug-free versus SSRIs versus healthy controls. Frontiers in Psychiatry, 13, 858675. https://doi.org/10.3389/fpsyt.2022.858675
Zou, W., Feng, R., & Yang, Y. (2018). Changes in the serum levels of inflammatory cytokines in antidepressant drug-naive patients with major depression. PLoS One, 13(6), e0197267. https://doi.org/10.1371/journal.pone.0197267