Fabrication of Polymeric Microneedles using Novel Vacuum Compression Molding Technique for Transdermal Drug Delivery.
PLGA
lidocaine
microneedles
transdermal delivery
vacuum compression molding
Journal
Pharmaceutical research
ISSN: 1573-904X
Titre abrégé: Pharm Res
Pays: United States
ID NLM: 8406521
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
20
05
2022
accepted:
28
09
2022
pubmed:
5
10
2022
medline:
27
12
2022
entrez:
4
10
2022
Statut:
ppublish
Résumé
To demonstrate the feasibility of vacuum compression molding as a novel technique for fabricating polymeric poly (D, L-lactic-co-glycolic acid) microneedles. First, polydimethylsiloxane molds were prepared using metal microneedle templates and fixed in the MeltPrep® Vacuum Compression Molding tool. Poly (D, L-lactic-co-glycolic acid) (EXPANSORB® DLG 50-5A) was added, enclosed, and heated at 130°C for 15 min under a vacuum of -15 psi, cooled with compressed air for 15 min, followed by freezing at -20°C for 30 min, and stored in a desiccator. The microneedles and microchannels were characterized by a variety of imaging techniques. In vitro permeation of model drug lidocaine as base and hydrochloride salt was demonstrated across intact and microporated dermatomed human skin. Fabricated PLGA microneedles were pyramid-shaped, sharp, uniform, and mechanically robust. Scanning electron microscopy, skin integrity, dye-binding, histology, and confocal laser microscopy studies confirmed the microchannel formation. The receptor delivery of lidocaine salt increased significantly in microporated (270.57 ± 3.73 μg/cm Vacuum compression molding was demonstrated as a novel technique to fabricate uniform, solvent-free, strong polymer microneedles in a short time.
Identifiants
pubmed: 36195823
doi: 10.1007/s11095-022-03406-8
pii: 10.1007/s11095-022-03406-8
doi:
Substances chimiques
glycolic acid
0WT12SX38S
Lidocaine
98PI200987
Polymers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3301-3315Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Upasani R, Herwadkar A, Singh N, Banga AK. Innovations and future prospects of dermal delivery systems. In: Dermal Drug Delivery. CRC Press; 2020;415–38.
Banga AK. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies. CRC Press 2011.
Banga A. Transdermal and topical delivery of therapeutic peptides and proteins. In: Therapeutic peptides and proteins. CRC Press 2015;282–319.
Junaid MSA, Tijani AO, Puri A, Banga AK. In vitro percutaneous absorption studies of cannabidiol using human skin: Exploring the effect of drug concentration, chemical enhancers, and essential oils. Int J Pharm. 2022;616:121540.
doi: 10.1016/j.ijpharm.2022.121540
Banga AK, Puri A, Bhattaccharjee SA, Zhang W, Clark M, Singh ON, et al. Development of a transdermal delivery system for tenofovir alafenamide, a prodrug of tenofovir with potent antiviral activity against hiv and hbv. Pharmaceutics. 2019;11(4):173.
doi: 10.3390/pharmaceutics11040173
Vora D, Garimella HT, German CL, Banga AK. Microneedle and iontophoresis mediated delivery of methotrexate into and across healthy and psoriatic skin. Int J Pharm. 2022;618:121693.
doi: 10.1016/j.ijpharm.2022.121693
Kale M, Kipping T, Banga AK. Modulated delivery of donepezil using a combination of skin microporation and iontophoresis. Int J Pharm. 2020;589:119853.
doi: 10.1016/j.ijpharm.2020.119853
Dandekar AA, Garimella HT, German CL, Banga AK. Microneedle mediated iontophoretic delivery of tofacitinib citrate. Pharm Res. 2022. https://doi.org/10.1007/s11095-022-03190-5 .
Junaid MSA, Banga AK. Transdermal delivery of baclofen using iontophoresis and microneedles. AAPS PharmSciTech [Internet]. 2022;23(3):84 Available from: https://link.springer.com/10.1208/s12249-022-02232-w .
doi: 10.1208/s12249-022-02232-w
Chang SL, Hofmann GA, Zhang L, Deftos LJ, Banga AK. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J Control Release. 2000;66(2-3):127–33.
doi: 10.1016/S0168-3659(99)00262-X
Nguyen HX, Banga AK. Enhanced skin delivery of vismodegib by microneedle treatment. Drug Deliv Transl Res. 2015;5(4):407–23.
doi: 10.1007/s13346-015-0241-3
Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv. 2009;6:343–54.
doi: 10.1517/17425240902841935
Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, et al. Microneedles: A new generation vaccine delivery system. Micromachines. 2021;12(4):435.
doi: 10.3390/mi12040435
Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers. 2021;13(16):2815.
doi: 10.3390/polym13162815
Anjani QK, Permana AD, Cárcamo-Martínez Á, Domínguez-Robles J, Tekko IA, Larrañeta E, et al. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur J Pharm Biopharm. 2021;158:294–312.
doi: 10.1016/j.ejpb.2020.12.003
Sonetha V, Majumdar S, Shah S. Step-wise micro-fabrication techniques of microneedle arrays with applications in transdermal drug delivery – A review. J Drug Deliv Sci Technol. Editions de Sante 2022;68.
Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Dev Ther. 2013;7:945–52.
Rad ZF, Prewett PD, Davies GJ. An overview of microneedle applications, materials, and fabrication methods. Beilstein J Nanotechnol. 2021;12:1034–46.
doi: 10.3762/bjnano.12.77
Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, et al. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88–103.
doi: 10.1016/j.ejpb.2018.05.017
Treffer D. What is VCM technology? ( https://www.meltprep.com/vcm ) (Accessed 20 April 2022).
Shadambikar G, Kipping T, Di-Gallo N, Elia AG, Knüttel AN, Treffer D, et al. Vacuum compression molding as a screening tool to investigate carrier suitability for hot-melt extrusion formulations. Pharmaceutics. 2020;12(11):1–17.
doi: 10.3390/pharmaceutics12111019
Panda A, Sharma PK, McCann T, Bloomekatz J, Repka MA, Murthy SN. Fabrication and development of controlled release PLGA microneedles for macromolecular delivery using FITC-Dextran as model molecule. J Drug Deliv Sci Technol. 2022;68:102712.
doi: 10.1016/j.jddst.2021.102712
Nguyen HX, Banga AK. Fabrication, characterization and application of sugar microneedles for transdermal drug delivery. Ther Deliv. 2017;8(5):249–64.
doi: 10.4155/tde-2016-0096
Nguyen HX, Banga AK. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharm Res. 2018;35(3):68.
doi: 10.1007/s11095-018-2369-6
Vora D, Kim Y, Banga AK. Development and evaluation of a heparin gel for transdermal delivery via laser-generated micropores. Ther Deliv. 2021;12(2):133–44.
doi: 10.4155/tde-2020-0024
Gujjar M, Banga AK. Iontophoretic and microneedle mediated transdermal delivery of glycopyrrolate. Pharmaceutics. 2014;6(4):663–71.
doi: 10.3390/pharmaceutics6040663
Bozorg BD, Banga AK. Effect of different pressure-sensitive adhesives on performance parameters of matrix-type transdermal delivery systems. Pharmaceutics. 2020;12(3):209.
doi: 10.3390/pharmaceutics12030209
Banga AK. New Technologies to allow transdermal delivery of therapeutic proteins and small water-soluble drugs. Am J Drug Deliv. 2006;4:221–30.
doi: 10.2165/00137696-200604040-00005
Kim Y, Bhattaccharjee SA, Beck-Broichsitter M, Banga AK. Fabrication and characterization of hyaluronic acid microneedles to enhance delivery of magnesium ascorbyl phosphate into skin. Biomed Microdevices. 2019;21(4):104.
doi: 10.1007/s10544-019-0455-0
Lin YH, Lee IC, Hsu WC, Hsu CH, Chang KP, Gao SS. Rapid fabrication method of a microneedle mold with controllable needle height and width. Biomed Microdevices. 2016;18(5):85.
doi: 10.1007/s10544-016-0113-8
Baek JY, Kang KM, Kim HJ, Kim JH, Lee JH, Shin G, et al. Manufacturing process of polymeric microneedle sensors for mass production. Micromachines (Basel). 2021;12(11):1364.
doi: 10.3390/mi12111364
Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472(1–2):65–73.
doi: 10.1016/j.ijpharm.2014.05.042
Donnelly RF, McCrudden MTC, Alkilani AZ, Larrañeta E, McAlister E, Courtenay AJ, et al. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS ONE. 2014;9(10):e111547.
doi: 10.1371/journal.pone.0111547
Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155–63.
doi: 10.1016/j.jbiomech.2003.12.010
Bhattaccharjee S, Beck-Broichsitter M, Banga AK. In situ gel formation in microporated skin for enhanced topical delivery of niacinamide. Pharmaceutics. 2020;12(5):472.
doi: 10.3390/pharmaceutics12050472
Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104–13.
doi: 10.1007/s11095-007-9350-0
Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66.
doi: 10.1016/j.jconrel.2005.02.002
Baek SH, Shin JH, Kim YC. Drug-coated microneedles for rapid and painless local anesthesia. Biomed Microdevices. 2017;19(1):2.
doi: 10.1007/s10544-016-0144-1
Kochhar JS, Lim WXS, Zou S, Foo WY, Pan J, Kang L. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol Pharm. 2013;10(11):4272–80.
doi: 10.1021/mp400359w
Nayak A, Babla H, Han T, Das DB. Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound. Drug Deliv. 2016;23(2):668–79.
doi: 10.3109/10717544.2014.935985
Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7:438–70.
doi: 10.3390/pharmaceutics7040438
ChemAxon Ltd., Chemicalize-Instant Cheminformatics Solutions ( https://chemicalize.com/app/calculation/lidocaine hydrochloride) (Accessed 23 April 2022). 2022.
ChemAxon Ltd., Chemicalize-Instant Cheminformatics Solutions ( https://chemicalize.com/app/calculation/lidocaine ) (Accessed 23 April 2022). 2022.