Metaphase Cells Enrichment for Efficient Use in the Dicentric Chromosome Assay.


Journal

Cell biochemistry and biophysics
ISSN: 1559-0283
Titre abrégé: Cell Biochem Biophys
Pays: United States
ID NLM: 9701934

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 19 09 2022
accepted: 26 09 2022
pubmed: 11 10 2022
medline: 19 10 2022
entrez: 10 10 2022
Statut: ppublish

Résumé

The dicentric chromosome assay (DCA), is considered the 'gold standard' for radiation biodosimetry. Yet, DCA, as currently implemented, may be impractical for emergency response applications, especially when time is of the essence, owing to its labor-intensive and time-consuming nature. The growth of a primary lymphocyte culture for 48 h in vitro is required for DCA, and manual scoring of dicentric chromosomes (DCs) requires an additional 24-48 h, resulting in an overall processing time of 72-96 h for dose estimation. In order to improve this timing. we introduce a protocol that will detect the metaphase cells in a population of cells, and then will harvest only those metaphase cells. Our metaphase enrichment approach is based on fixed human lymphocytes incubated with monoclonal, anti-phosphorylated H3 histone (ser 10). Antibodies against this histone have been shown to be specific for mitotic cells. Colcemid is used to arrest the mitotic cells in metaphase. Following that, a flow-cytometric sorting apparatus isolates the mitotic fraction from a large population of cells, in a few minutes. These mitotic cells are then spread onto a slide and treated with our C-Banding procedure [Gonen et al. 2022], to visualize the centromeres with DAPI. This reduces the chemical processing time to ~2 h. This reduces the time required for the DCA and makes it practical for a much wider set of applications, such as emergency response following exposure of a large population to ionizing radiation.

Identifiants

pubmed: 36216973
doi: 10.1007/s12013-022-01106-z
pii: 10.1007/s12013-022-01106-z
doi:

Substances chimiques

Histones 0
Demecolcine Z01IVE25KI

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

647-656

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

IAEA-2001, “Cytogenetic analysis for radiation dose assessment, a manual”, Technical Reports Series 405. International Atomic Energy Agency 2001.
IAEA-2011, “Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies”, 2011. https://www.iaea.org/publications/8735/cytogenetic-dosimetry-applications-in-preparedness-for-and-response-toradiation-emergencies .
Blakely, W. F., Carr, Z., Chu, M. C.-M., Dayal-Drager, R., Fujimoto, K., Hopmeir, M., Kulka, U., Lillis-Hearne, P., Livingston, G. K., Lloyd, D. C., Maznyk, N., Del Rosario Perez, M., Romm, H., Takashima, Y., Voisin, P., Wilkins, R. C., & Yoshida, M. A. (2009). “WHO 1st consultation on the development of a global biodosimetry laboratories network for radiation emergencies (BioDoseNet)”. Radiation Research, 171, 127–139. pp.
pubmed: 19138057 doi: 10.1667/RR1549.1
Beaton-Green, L. A., Barr, T., Ainsbury, E. A., & Wilkins, R. C. (2016). “Retrospective biodosimetry of an occupational overexposure-case study”. Radiation Protection Dosimetry, 172(1–3), 254–259.
pubmed: 27431686 doi: 10.1093/rpd/ncw179
Pinto, M. M. P. L., Santos, N. F. G., & Amaral, A. (2010). “Current status of biodosimetry based on standard cytogenetic methods”. Radiation and Environmental Biophysics, 49, 567–581.
pubmed: 20617329 doi: 10.1007/s00411-010-0311-3
Ryan, T. L., Escalona, M. B., Smith, T. L., Albanese, J., Iddins, C. J., & Balajee, A. S. (2019). “Optimization and validation of automated dicentric chromosome analysis for radiological/nuclear triage applications”. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 847, 503087 .
pubmed: 31699339 doi: 10.1016/j.mrgentox.2019.503087
Subramanian, U., O’Brien, B., McNamara, M., Romanyukha, L., Bolduc, D. L., Olsen, C., & Blakely, W. F. (2020). “Automated Dicentric Aberration Scoring for Triage Dose Assessment: 60Co Gamma Ray Dose-Response at Different Dose Rates”. Health Physics, 119(1), 52–58.
pubmed: 32483043 doi: 10.1097/HP.0000000000001285
Weber, J., Scheid, W., & Traut, H. (1992). “Time-saving in biological dosimetry by using the automatic metaphase finder Metafer2”. Mutation Research/Environmental Mutagenesis and Related Subjects, 272, 31–34.
doi: 10.1016/0165-1161(92)90006-8
Gruel, G., Grégoire, E., Lecas, S., Martin, C., Roch-Lefevre, S., & Vaurijoux, A. (2013). Voisin Pa., Voisin Ph., Barquinero J. F., “Biological dosimetry by automated dicentric scoring in a simulated emergency”. Radiation Research, 179, 557–569.
pubmed: 23560627 doi: 10.1667/RR3196.1
Li, Y., Shirley, B. C., Wilkins, R. C., Norton, F., Knoll, J. H. M., & Rogan, P. K. (2019). “Radiation dose estimation by completely automated interpretation of the dicentric chromosome assay”. Radiation Protection Dosimetry, 186(1), 42–47.
pubmed: 30624749
Oestreicher, U., Endesfelder, D., Gomolka, M., Kesminiene, A., Lang, P., Lindholm, C., Robler, U., Samaga, D., & Kulka, U. (2018). “Automated scoring of dicentric chromosomes differentiates increased radiation sensitivity of young children after low dose CT exposure in vitro”. International Journal of Radiation Biology, 94, 1017–1026.
pubmed: 30028637 doi: 10.1080/09553002.2018.1503429
Romm, H., Ainsbury, E., Barnard, S., Barrios, L., Barquinero, J. F., Beinke, C., Deperas, M., Gregoire, E., Koivistoinen, A., Lindholm, C., Moquet, J., Oestreicher, U., Puig, R., Rothkamm, K., Sommer, S., Thierens, H., Vandersickel, V., Viral, A., & Wojcik, A. (2013). “Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents”. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 756, 174–183.
doi: 10.1016/j.mrgentox.2013.05.013
Shirley, B., Li, Y., Knoll, J. H. M., & Rogan, P. K. (2017). “Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation”. Journal of Visualized Experiments, 127(e56245), 1–15.
Vaurijoux, A., Gruel, G., Pouzoulet, F., Grégoire, E., Martin, C., Roch-Lefèvre, S., Voisin, P. A., Voisin, P. H., & Roy, L. (2009). “Strategy for population triage based on dicentric analysis”. Radiation Research, 171(5), 541–548.
pubmed: 19580489 doi: 10.1667/RR1664.1
Finnon, P., Lloyd, D. C., & Edwards, A. A. (1986). “An assessment of the metaphase finding capability of the Cytoscan 110”. Mutation Research/Environmental Mutagenesis and Related Subjects, 164, 101–108.
doi: 10.1016/0165-1161(86)90048-8
Balajee, A. S., Smith, T., Ryan, T., Escalona, M., & Dainiak, N. (2018). “Development of a miniaturized version of dicentric chromosome assay tool for radiological triage”. Radiation Protection Dosimetry, 182(1), 139–145.
pubmed: 30247729 doi: 10.1093/rpd/ncy127
Castleman, K. R. (1992). “The PSI automatic metaphase finder”. Journal of Radiation Research, 33(Supplement), 124–128.
pubmed: 1507164 doi: 10.1269/jrr.33.SUPPLEMENT_124
Furukawa, A. (2019). “The project of Another Low-Cost Metaphase Finder (Second Report-Application of Artificial Intelligence)”. Radiation Protection Dosimetry, 186(1), 37–41.
pubmed: 30806467
Roy, L., Roch-Lefevre, S., Vaurijoux, A., Voisin, P. A., Martin, C., Gregoire, C., & Voisin, P. H. (2007). “Optimization of cytogenetic procedures for population triage in case of radiological emergency”. Radiation Measurements, 42, 1143–1146.
doi: 10.1016/j.radmeas.2007.05.044
Nagaraj, S., Nivargi, S., Nanjappa, L., & Venkataravanappa, J. (2018). “Separation and Optimisation of a Sucrose Density Gradient Centrifugation Protocol for Isolation of Peripheral Blood Mononuclear. Cells (PBMC)”, Asian Journal of Research in Biochemistry, 3(2), 1–4.
Wolff, D. A., & Pertoft, H. (1972). Separation of Hela cells by colloidal silica density gradient centrigugation. Separation and Partial Synchrony of Mitotic Cells. Journal of Cell Biology, 55, 579–585.
pubmed: 4571230 pmcid: 2108819 doi: 10.1083/jcb.55.3.579
Boucrot, E., & Kirchhausen, T. (2008). Mammalian Cells Change during Mitosis. PLoS ONE, 3(1), e1477.
pubmed: 18213385 pmcid: 2198941 doi: 10.1371/journal.pone.0001477
Larsen, J. K., Munch-Petersen, B., Christiansen, J., & Jorgensen, K. (1986). “Flow Cytometric Discrimination of Mitotic Cells: Resolution of M, as Well as GI S, and G2 Phase Nuclei With Mithramycin, Propidium Iodide, and Ethidium Bromide After Fixation With Formaldehyde”. Cytometry, 7, 54–63.
pubmed: 2419056 doi: 10.1002/cyto.990070108
Anderson, H. J., de Jong, G., Vincent, I., & Roberge, M. (1998). “Flow Cytometry of Mitotic Cells”. Experimental Cell Research, 238, 498–502 .
pubmed: 9473359 doi: 10.1006/excr.1997.3862
Kim, K. H., & Sederstrom, J. M. (2016). “Assaying cell cycle status using flow cytometry”. Current Protocols in Molecular Biology, 111, 28.6.1–28.6.11.
Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M., Sakurai, M., Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T., & Inagaki, M. (1999). “Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation”. Journal of Biological Chemistry, 274(36), 25543–25549.
pubmed: 10464286 doi: 10.1074/jbc.274.36.25543
Hendzel, M. J., Wei, Y., Mancini, M. A., Van Hooser, A., Ranalli, T., Brinkley, B. R., Bazett-Jones, D. P., & Allis, C. D. (1997). “Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation”. Chromosoma, 106(6), 348–360.
pubmed: 9362543 doi: 10.1007/s004120050256
Preuss, U., Landsberg, G., & Scheidtmann, K. H. (2003). “Novel mitosis‐specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase”. Nucleic Acids Research, 31(3), 878–885.
pubmed: 12560483 pmcid: 149197 doi: 10.1093/nar/gkg176
Juan, G., Traganos, F., James, W. M., Ray, J. M., Roberge, M., Sauve, D. M., Anderson, H., & Darzynkiewicz, Z. (1998). “Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis”. Cytometry, 32, 71–77.
pubmed: 9627219 doi: 10.1002/(SICI)1097-0320(19980601)32:2<71::AID-CYTO1>3.0.CO;2-H
Gasnereau, I., Ganier, O., Bourgain, F., de Gramont, A., Gendron, M. C., & Sobczak-Thepot, J. (2007). “Flow Cytometry to Sort Mammalian Cells in Cytokinesis”. Cytometry Part A, 71A, 1–7.
doi: 10.1002/cyto.a.20352
Cheyene, E. B., Mayenburg, J. M., Patel, J. M., Cuadros Sanches, S., Lachappe, S., Wilkins R. C., & Beaton-Green L. A., Poster 1c-28-D1, IABERD 2022 Okayama.
Darzynkiewicz, Z., Traganos, F., Sharpless, T., & Melamed, M. R. (1977). “Recognition of cells in mitosis by flow cytometry”. Journal of Histochemistry and Cytochemistry, 25(7), 875–880.
pubmed: 70457 doi: 10.1177/25.7.70457
Di Vinci, A., Geido, E., Pfeffer, U., Vidali, G., & Giaretti, W. (1993). “Quantitative analysis of mitotic cells using monoclonal antibodies against AF-2 protein”. Cytometry, 14, 421–427.
pubmed: 7685680 doi: 10.1002/cyto.990140411
Gong, J., Traganos, F., & Darzynkiewicz, Z. (1995). “Discrimination of G2 and mitotic cells by flow cytometry based on different expression of cyclins A and B1”. Experimental Cell Research, 220(1), 226–231.
pubmed: 7664839 doi: 10.1006/excr.1995.1310
Landberg, G., Tan, E. M., & Roos, G. (1990). “Flow cytometric multiparameter analysis of proliferating cell nuclear antigen/cyclin an Ki-67 antigen: A new view of the cell cycle”. Experimental Cell Research, 187, 111–118.
pubmed: 1967582 doi: 10.1016/0014-4827(90)90124-S
Nusse, M., Julch, M., Geido, E., Bruno, S., Di Vinci, A., Giaretti, W., & Ruoss, K. (1989). “Flow cytometric detection of mitotic cells using the bromodeoxyuridine/DNA technique in combination with 90 degrees and forward scatter measurements”. Cytometry, 10, 312–319.
pubmed: 2496957 doi: 10.1002/cyto.990100310
Nusse, M., Beisker, W., Hoffman, C., & Tarnok, A. (1990). “Flow cytometric analysis of G1- and G2/M-phase subpopulations in mammalian cell nuclei using side scatter and DNA content measurements”. Cytometry, 11, 813–821.
pubmed: 2272246 doi: 10.1002/cyto.990110707
Roti, J. L. R., Higashikubo, R., Blair, O. C., & Uygur, N. (1982). “Cell-Cycle position and nuclear protein content”. Cytometry, 3, 91–96.
doi: 10.1002/cyto.990030205
Zucker, R. M., Elstein, K. H., Easterling, R. E., & Massaro, E. J. (1988). “Flow cytometric discrimination of mitotic nuclei by right-angle scatter”. Cytometry, 9, 226–231.
pubmed: 3132355 doi: 10.1002/cyto.990090307
Fox, M. H., Read, R. A., & Bedford, J. S. (1987). Comparison of synchronized Chinese hamster ovary cells obtained by mitotic shake-off, hydroxyurea, aphidicolin, or methotrexate. Cytometry, 8, 315–320.
pubmed: 3109858 doi: 10.1002/cyto.990080312
Morris, C. M., & Fitzgerald, P. H. (1985). “An evaluation of high resolution chromosome banding of hematologic cells by methotrexate synchronization and thymidine release”. Cancer Genetics and Cytogenetics, 14, 275–278.
pubmed: 3967208 doi: 10.1016/0165-4608(85)90193-1
Henegariu, O., Heerema, N. A., Wright, L. L., Ward, P. B., & Vance, G. H. (2001). “Improvements in Cytogenetic Slide Preparation: Controlled Chromosome Spreading, Chemical Aging and Gradual Denaturing”. Cytometry, 43, 101–109.
pubmed: 11169574 doi: 10.1002/1097-0320(20010201)43:2<101::AID-CYTO1024>3.0.CO;2-8
BD FACS AriaIII Specifications: https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/BD_FACSAria_III_filterguide.pdf .
Craig-Holmes, A. P., Moore, F. B., & Shaw, M. W. (1973). “Polymorphism of Human C-Band Heterochromatin. I. Frequency of Variants”. American Journal of Human Genetics, 25, 181–192.
pubmed: 4120239 pmcid: 1762502
Schindelin, J., Arganda-Carreras, I., & Frise, E. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods, 9, 676–682. https://doi.org/10.1038/nmeth.2019 .
doi: 10.1038/nmeth.2019 pubmed: 22743772
Edwards, A., Voisin, P., Sorokine-Durm, I., Maznik, N., Vinnikov, V., Mikhalevich, L., Moquet, J., Lloyd, D., Delbos, M., & Durand, V. (2004). “Biological estimates of dose to inhabitants of Belarus and Ukraine following the Chernobyl accident”. Radiation Protection Dosimetry, 111(2), 211–219.
pubmed: 15266074 doi: 10.1093/rpd/nch039
Estandarte K. A. C. A Review of the Different Staining Techniques for Human Metaphase Chromosomes. Submitted in partial fulfillment of the requirements for the degree of master’s in research at the University of London February 24, 2012. https://www.ucl.ac.uk/~ucapikr/projects/Ana_staining_LitRev.pdf .
Kim, S. K., Eriksson, S., Kubista, M., & Norden, B. (1993). “Interaction of 4′,6-diamidino-2-phenylindole (DAPI) with poly d (G-C)2 and poly d(G-M5C)2—evidence for major groove binding of a DNA probe”. Journal of the American Chemical Society, 115(9), 3441–3447.
doi: 10.1021/ja00062a006
Wilson, W. D., Tanious, F. A., Barton, H. J., Jones, R. L., Fox, K., Wydra, R. L., & Strekowski, L. (1990). “DNA sequences dependent binding modes of 4′,6-diamidino-2-phenylindole (DAPI)”. Biochemistry, 29(36), 8452–8461.
pubmed: 2252904 doi: 10.1021/bi00488a036
Crosio, C., Fimia, G. M., Loury, R., Kimura, M., Okano, Y., Zhou, H., Sen, S., Allis, C. D. & Sassone-Corsi, P. (2002). Mitotic Phosphorylation of Histone H3: Spatio-Temporal Regulation by Mammalian Aurora Kinases. Mol Cell Biol, 22, 874–885. https://doi.org/10.1128/MCB.22.3.874-885.2002 .
doi: 10.1128/MCB.22.3.874-885.2002 pubmed: 11784863 pmcid: 133550
Gonen, R., Platkov, M., Gardos, Z., Shayir, S., Levitsky, I., Weinstein, M., & Manor, E. (2022). “A DAPI-based Modified C-banding Technique for a Rapid Achieving High Photographic Contrast of Centromeres on Chromosomes”. Cell Biochemistry and Biophysics, 80, 375–384.
pubmed: 35137344 doi: 10.1007/s12013-022-01065-5
IAEA Module 9, “Automatic Analysis of Chromosomal Assays” https://www-pub.iaea.org/MTCD/Publications/PDF/EPR-Biodosimetry/Lectures/Module%209_Automatic%20Analysis%20of%20Chromosomal%20Assays.ppt .
M’kacher, R., Maalouf, E. E., Ricoul, M., Heidingsfelder, L., Laplagne, E., Cuceu, C., Hempel, W. M., Colicchio, B., Dieterlen, A., & Sabatier, L. (2014). “New tool for biological dosimetry: Reevaluation and automation of thegold standard method following telomere and centromere staining”. Mutation Research, 770, 45–53.
pubmed: 25771869 doi: 10.1016/j.mrfmmm.2014.09.007
Warren K., “Preparing Metaphase Spreads: The Breakdown on Broken-Down Cells”, http://bitesizebioo.com/49195/preparingMetaphase spreads . 10/2020.

Auteurs

Max Platkov (M)

Nuclear Research Center Negev, 84190, Beer-Sheba, Israel.

Uzi Hadad (U)

Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University, Beer Sheba, Israel.

Ariela Burg (A)

Department of Chemical Engineering, Sami Shamoon College of Engineering, 8410802, Beer-Sheva, Israel.

Inna Levitsky (I)

Department of Chemical Engineering, Sami Shamoon College of Engineering, 8410802, Beer-Sheva, Israel.

Michael Zagatzki (M)

Medical Corps, Israeli Defense Forces, Tel HaShomer, Israel.

Omer Damri (O)

Department of Chemical Engineering, Sami Shamoon College of Engineering, 8410802, Beer-Sheva, Israel.

Aryeh Weiss (A)

Faculty of Engineering Bar-Ilan University Ramat-Gan, 5290002, Ramat-Gan, Israel.

Yair Lauber (Y)

Faculty of Engineering Bar-Ilan University Ramat-Gan, 5290002, Ramat-Gan, Israel.

Shirly Amar (S)

Genetics Lab, Soroka Medical Center, Beer Sheba, Israel.

Lior Carmel (L)

Department of Biomedical Engineering, Ben Gurion University, Beer Sheva, Israel.

Raphael Gonen (R)

Nuclear Research Center Negev, 84190, Beer-Sheba, Israel. rgonenrgonen@gmail.com.
Department of Biomedical Engineering, Ben Gurion University, Beer Sheva, Israel. rgonenrgonen@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH