Whole-genome analysis identifies novel drivers and high-risk double-hit events in relapsed/refractory myeloma.
Journal
Blood
ISSN: 1528-0020
Titre abrégé: Blood
Pays: United States
ID NLM: 7603509
Informations de publication
Date de publication:
09 02 2023
09 02 2023
Historique:
accepted:
14
09
2022
received:
09
05
2022
pubmed:
13
10
2022
medline:
14
2
2023
entrez:
12
10
2022
Statut:
ppublish
Résumé
Large-scale analyses of genomic data from patients with newly diagnosed multiple myeloma (ndMM) have been undertaken, however, large-scale analysis of relapsed/refractory MM (rrMM) has not been performed. We hypothesize that somatic variants chronicle the therapeutic exposures and clonal structure of myeloma from ndMM to rrMM stages. We generated whole-genome sequencing (WGS) data from 418 tumors (386 patients) derived from 6 rrMM clinical trials and compared them with WGS from 198 unrelated patients with ndMM in a population-based case-control fashion. We identified significantly enriched events at the rrMM stage, including drivers (DUOX2, EZH2, TP53), biallelic inactivation (TP53), noncoding mutations in bona fide drivers (TP53BP1, BLM), copy number aberrations (CNAs; 1qGain, 17pLOH), and double-hit events (Amp1q-ISS3, 1qGain-17p loss-of-heterozygosity). Mutational signature analysis identified a subclonal defective mismatch repair signature enriched in rrMM and highly active in high mutation burden tumors, a likely feature of therapy-associated expanding subclones. Further analysis focused on the association of genomic aberrations enriched at different stages of resistance to immunomodulatory agent (IMiD)-based therapy. This analysis revealed that TP53, DUOX2, 1qGain, and 17p loss-of-heterozygosity increased in prevalence from ndMM to lenalidomide resistant (LENR) to pomalidomide resistant (POMR) stages, whereas enrichment of MAML3 along with immunoglobulin lambda (IGL) and MYC translocations distinguished POM from the LEN subgroup. Genomic drivers associated with rrMM are those that confer clonal selective advantage under therapeutic pressure. Their role in therapy evasion should be further evaluated in longitudinal patient samples, to confirm these associations with the evolution of clinical resistance and to identify molecular subsets of rrMM for the development of targeted therapies.
Identifiants
pubmed: 36223594
pii: S0006-4971(22)07730-8
doi: 10.1182/blood.2022017010
pmc: PMC10163277
doi:
Substances chimiques
Dual Oxidases
EC 1.11.1.-
Lenalidomide
F0P408N6V4
Immunologic Factors
0
Dexamethasone
7S5I7G3JQL
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
620-633Subventions
Organisme : NIGMS NIH HHS
ID : P20 GM121176
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA100707
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
Références
Clin Cancer Res. 2020 May 15;26(10):2422-2432
pubmed: 31988198
Nat Commun. 2022 Jun 29;13(1):3750
pubmed: 35768438
Pharmacogenomics J. 2021 Feb;21(1):47-59
pubmed: 32683419
Cancer Res. 2012 Oct 15;72(20):5250-60
pubmed: 22915756
Nat Commun. 2019 Jul 5;10(1):2969
pubmed: 31278357
Science. 2013 Mar 29;339(6127):1546-58
pubmed: 23539594
Blood Cancer J. 2020 Oct 14;10(10):101
pubmed: 33057009
Clin Cancer Res. 2010 Nov 1;16(21):5107-13
pubmed: 20823149
Cancer Discov. 2018 Dec;8(12):1518-1528
pubmed: 30442708
Mol Cell Oncol. 2020 Jun 17;7(4):1768819
pubmed: 32944627
Clin Cancer Res. 2011 Dec 15;17(24):7776-84
pubmed: 21994415
Leukemia. 2022 Jul;36(7):1887-1897
pubmed: 35643867
Leukemia. 2018 Nov;32(11):2459-2470
pubmed: 29654271
Blood. 2018 Aug 9;132(6):587-597
pubmed: 29884741
Nat Commun. 2020 Apr 21;11(1):1917
pubmed: 32317634
J Clin Oncol. 2020 Sep 20;38(27):3107-3118
pubmed: 32687451
Blood. 2021 Jan 14;137(2):232-237
pubmed: 33443552
Blood Cancer J. 2022 Jan 26;12(1):15
pubmed: 35082295
Leukemia. 2019 Jan;33(1):159-170
pubmed: 29967379
Leukemia. 2020 Jan;34(1):322-326
pubmed: 31439946
Nat Commun. 2019 Aug 23;10(1):3835
pubmed: 31444325
Commun Biol. 2021 Mar 29;4(1):424
pubmed: 33782531
Oncogene. 2001 Sep 10;20(40):5611-22
pubmed: 11607813
Nucleic Acids Res. 2010 Sep;38(16):e164
pubmed: 20601685
Bioinformatics. 2016 Apr 15;32(8):1220-2
pubmed: 26647377
Curr Protoc. 2021 Mar;1(3):e90
pubmed: 33780170
Nat Commun. 2021 Feb 8;12(1):868
pubmed: 33558511
BMC Med Genomics. 2021 Dec 18;14(1):295
pubmed: 34922559
Nature. 2020 Feb;578(7793):94-101
pubmed: 32025018
J Cancer Res Clin Oncol. 2017 Mar;143(3):419-431
pubmed: 27838786
Nat Commun. 2014;5:2997
pubmed: 24429703
Nat Commun. 2020 Aug 27;11(1):4306
pubmed: 32855398
Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612
pubmed: 33237311
Leukemia. 2019 Feb;33(2):447-456
pubmed: 30026573
Nat Commun. 2019 Apr 23;10(1):1911
pubmed: 31015454
Haematologica. 2019 Jul;104(7):1440-1450
pubmed: 30733268
DNA Repair (Amst). 2016 Feb;38:135-139
pubmed: 26698647
Leuk Lymphoma. 2018 Oct;59(10):2454-2459
pubmed: 29384409
Sci Rep. 2017 Oct 13;7(1):13124
pubmed: 29030609
Genome Biol. 2021 Feb 24;22(1):71
pubmed: 33627141
Cell. 2017 Jul 27;170(3):564-576.e16
pubmed: 28753430
Carcinogenesis. 2021 Feb 11;42(1):105-117
pubmed: 32531052
Blood. 2016 Sep 29;128(13):1735-44
pubmed: 27516441
Blood. 2022 Oct 20;140(16):1816-1821
pubmed: 35853156
Cell. 2018 Apr 5;173(2):321-337.e10
pubmed: 29625050
Cell. 2012 May 25;149(5):994-1007
pubmed: 22608083
Br J Haematol. 2007 Feb;136(4):615-23
pubmed: 17223915
Bioinformatics. 2017 Jan 1;33(1):8-16
pubmed: 27591080
Nat Commun. 2021 Nov 26;12(1):6946
pubmed: 34836952
Cancer Discov. 2015 Sep;5(9):972-87
pubmed: 26080835
Haematologica. 2022 Aug 01;107(8):1891-1901
pubmed: 35045690