Maturation and circuit integration of transplanted human cortical organoids.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
16
12
2021
accepted:
25
08
2022
entrez:
12
10
2022
pubmed:
13
10
2022
medline:
15
10
2022
Statut:
ppublish
Résumé
Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease
Identifiants
pubmed: 36224417
doi: 10.1038/s41586-022-05277-w
pii: 10.1038/s41586-022-05277-w
pmc: PMC9556304
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
319-326Subventions
Organisme : NINDS NIH HHS
ID : K08 NS123544
Pays : United States
Organisme : NIMH NIH HHS
ID : T32 MH019938
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH115012
Pays : United States
Organisme : NIDA NIH HHS
ID : K99 DA050662
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Kelley, K. W. & Pașca, S. P. Human brain organogenesis: toward a cellular understanding of development and disease. Cell 185, 42–61 (2021).
pubmed: 34774127
doi: 10.1016/j.cell.2021.10.003
Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).
pubmed: 26005811
pmcid: 4489980
doi: 10.1038/nmeth.3415
Valesco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).
doi: 10.1038/s41586-019-1289-x
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425
pmcid: 4900885
doi: 10.1016/j.cell.2016.04.032
Yoon, S. J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).
pubmed: 30573846
doi: 10.1038/s41592-018-0255-0
Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).
pubmed: 28445465
pmcid: 5805137
doi: 10.1038/nature22330
Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).
pubmed: 23395372
doi: 10.1016/j.neuron.2012.12.011
Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986.e6 (2019).
pubmed: 31761708
pmcid: 6899440
doi: 10.1016/j.neuron.2019.10.002
Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).
pubmed: 29658944
pmcid: 6331203
doi: 10.1038/nbt.4127
Real, R. et al. In vivo modeling of human neuron dynamics and down syndrome. Science 362, eaau1810 (2018).
pubmed: 30309905
pmcid: 6570619
doi: 10.1126/science.aau1810
Kitahara, T. et al. Axonal extensions along corticospinal tracts from transplanted human cerebral organoids. Stem Cell Rep. 15, 467–481 (2020).
doi: 10.1016/j.stemcr.2020.06.016
Xiong, M. et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell 28, 112–126.e6 (2021).
pubmed: 32966778
doi: 10.1016/j.stem.2020.08.014
Kichula, E. A. & Huntley, G. W. Developmental and comparative aspects of posterior medial thalamocortical innervation of the barrel cortex in mice and rats. J. Comp. Neurol. 509, 239–258 (2008).
pubmed: 18496871
pmcid: 4913357
doi: 10.1002/cne.21690
Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013).
pubmed: 23325215
pmcid: 3576027
doi: 10.1038/nature11860
Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).
pubmed: 31474560
pmcid: 6778040
doi: 10.1016/j.stem.2019.08.002
Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).
pubmed: 29230054
doi: 10.1038/s41593-017-0029-5
Ataman, B. et al. Evolution of osteocrin as an activity-regulated factor in the primate brain. Nature 539, 120–129 (2016).
doi: 10.1038/nature20111
Hong, E. J., McCord, A. E. & Greenberg, M. E. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 60, 610–624 (2008).
pubmed: 19038219
pmcid: 2873221
doi: 10.1016/j.neuron.2008.09.024
Polioudakis, D. et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103, 785–801.e8 (2019).
pubmed: 31303374
pmcid: 6831089
doi: 10.1016/j.neuron.2019.06.011
Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184, 5053–5069.e23 (2021).
pubmed: 34390642
doi: 10.1016/j.cell.2021.07.039
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
pubmed: 31435019
pmcid: 6919571
doi: 10.1038/s41586-019-1506-7
Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).
pubmed: 34616062
pmcid: 8494640
doi: 10.1038/s41586-021-03465-8
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854
pmcid: 6413317
doi: 10.1126/science.aat7615
Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).
pubmed: 33619405
pmcid: 8109149
doi: 10.1038/s41593-021-00802-y
Krey, J. F. et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat. Neurosci. 16, 201–209 (2013).
pubmed: 23313911
pmcid: 3568452
doi: 10.1038/nn.3307
Agmon, A. & Connors, B. W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991).
pubmed: 1870696
doi: 10.1016/0306-4522(91)90333-J
Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).
pubmed: 19151697
pmcid: 2745650
doi: 10.1038/nature07709
Kalmbach, B. E. et al. h-Channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in human versus mouse cerebral cortex. Neuron 100, 1194–1208.e5 (2018).
pubmed: 30392798
pmcid: 6447369
doi: 10.1016/j.neuron.2018.10.012
Molnár, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).
pubmed: 33060328
pmcid: 8050953
doi: 10.1126/science.abb2153
Jabaudon, D. Fate and freedom in developing neocortical circuits. Nat. Commun. 8, 16042 (2017).
pubmed: 28671189
pmcid: 5500875
doi: 10.1038/ncomms16042
Matson, K. J. et al. Isolation of adult spinal cord nuclei for massively parallel single-nucleus RNA sequencing. J. Vis. Exp. 140, 58413 (2018).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).
pubmed: 30954475
pmcid: 6853612
doi: 10.1016/j.cels.2019.03.003
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
doi: 10.1038/nbt.4314
Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).
pubmed: 29217575
pmcid: 5991609
doi: 10.1126/science.aap8809
Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).
pubmed: 34584091
pmcid: 8479118
doi: 10.1038/s41467-021-25960-2
Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).
pubmed: 19465376
pmcid: 2703978
doi: 10.1093/nar/gkp427
Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).
pubmed: 30545855
pmcid: 6900982
doi: 10.1126/science.aat8077
Huguenard, J. R. & Prince, D. A. Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J. Neurosci. 14, 5485–5502 (1994).
pubmed: 8083749
pmcid: 6577071
doi: 10.1523/JNEUROSCI.14-09-05485.1994
Feng, L., Zhao, T. & Kim, J. Neutube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro 2, ENEURO.0049-14.2014 (2015).
pubmed: 26464967
pmcid: 4586918
doi: 10.1523/ENEURO.0049-14.2014
Arshadi, C., Günther, U., Eddison, M., Harrington, K. I. S. & Ferreira, T. A. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat. Methods 18, 374–377 (2021).
pubmed: 33795878
doi: 10.1038/s41592-021-01105-7
Steinberg, E. E. et al. Amygdala–midbrain connections modulate appetitive and aversive learning. Neuron 106, 1026–1043.e9 (2020).
pubmed: 32294466
doi: 10.1016/j.neuron.2020.03.016
Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).
pubmed: 29469809
pmcid: 5871355
doi: 10.7554/eLife.28728
Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).
pubmed: 31243367
pmcid: 6642054
doi: 10.1038/s41586-019-1346-5