An experimental test of the nicotinic hypothesis of COVID-19.
SARS-CoV-2
acetylcholine receptors
binding competition assays
nicotinic receptors
spike protein
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
entrez:
24
10
2022
pubmed:
25
10
2022
medline:
27
10
2022
Statut:
ppublish
Résumé
The pathophysiological mechanisms underlying the constellation of symptoms that characterize COVID-19 are only incompletely understood. In an effort to fill these gaps, a "nicotinic hypothesis," which posits that nicotinic acetylcholine receptors (AChRs) act as additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptors, has recently been put forth. A key feature of the proposal (with potential clinical ramifications) is the suggested competition between the virus' spike protein and small-molecule cholinergic ligands for the receptor's orthosteric binding sites. This notion is reminiscent of the well-established role of the muscle AChR during rabies virus infection. To address this hypothesis directly, we performed equilibrium-type ligand-binding competition assays using the homomeric human α7-AChR (expressed on intact cells) as the receptor, and radio-labeled α-bungarotoxin (α-BgTx) as the orthosteric-site competing ligand. We tested different SARS-CoV-2 spike protein peptides, the S1 domain, and the entire S1-S2 ectodomain, and found that none of them appreciably outcompete [
Identifiants
pubmed: 36279466
doi: 10.1073/pnas.2204242119
pmc: PMC9636949
doi:
Substances chimiques
spike protein, SARS-CoV-2
0
Spike Glycoprotein, Coronavirus
0
Bungarotoxins
0
Nicotine
6M3C89ZY6R
alpha7 Nicotinic Acetylcholine Receptor
0
Ligands
0
Receptors, Nicotinic
0
Cholinergic Agents
0
Choline
N91BDP6H0X
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2204242119Subventions
Organisme : NIH/NINDS
ID : R01-NS042169
Références
Nature. 2022 Mar;603(7902):706-714
pubmed: 35104837
FEBS Lett. 1992 Oct 19;311(2):115-8
pubmed: 1397297
Science. 2022 Jan 21;375(6578):267-269
pubmed: 35050660
Cell. 2021 Apr 15;184(8):2121-2134.e13
pubmed: 33735609
Nature. 2022 May;605(7909):206
pubmed: 35513455
Nat Med. 2022 Mar;28(3):583-590
pubmed: 35132265
Mol Neurobiol. 2022 Oct;59(10):6076-6090
pubmed: 35859025
Toxicol Rep. 2020 Dec 19;8:73-83
pubmed: 33425684
Nature. 2020 Dec;588(7838):498-502
pubmed: 32805734
Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
Int J Mol Sci. 2020 Aug 13;21(16):
pubmed: 32823591
Mol Pharmacol. 2011 Dec;80(6):1013-32
pubmed: 21885620
Neuron. 2020 Jun 17;106(6):952-962.e5
pubmed: 32275860
Science. 2020 Nov 13;370(6518):856-860
pubmed: 33082293
Biotechnol J. 2008 Dec;3(12):1539-47
pubmed: 18956371
J Mol Recognit. 1989 Sep;2(2):51-5
pubmed: 2636896
J Gen Virol. 1996 Oct;77 ( Pt 10):2437-40
pubmed: 8887475
Cell Chem Biol. 2022 Jan 20;29(1):74-83.e4
pubmed: 34246414
Annu Rev Virol. 2015 Nov;2(1):451-71
pubmed: 26958924
Biophys J. 2021 Mar 16;120(6):983-993
pubmed: 33609494
J Gen Physiol. 2022 Jun 6;154(6):
pubmed: 35612603
Brain Res. 1986 Dec;387(3):211-9
pubmed: 3828757
Trends Neurosci. 2022 May;45(5):358-368
pubmed: 35279295
Science. 2020 Nov 13;370(6518):861-865
pubmed: 33082294
Med Hypotheses. 2022 Jan;158:110741
pubmed: 34924680
Proteins. 1987;2(4):298-307
pubmed: 3448605
Arch Virol. 1985;84(3-4):277-82
pubmed: 3994518
Cell. 2020 Nov 12;183(4):1043-1057.e15
pubmed: 32970989
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5867-72
pubmed: 21436053
J Neurovirol. 2002 Apr;8(2):150-4
pubmed: 11935467
Clin Toxicol. 1970 Sep;3(3):457-72
pubmed: 4328742
Mol Pharmacol. 2007 Sep;72(3):715-24
pubmed: 17565004
Sci Rep. 2019 Oct 14;9(1):14758
pubmed: 31611606
Nature. 2022 Apr;604(7907):697-707
pubmed: 35255491
Front Immunol. 2020 Jun 11;11:1359
pubmed: 32595653
J Virol. 1993 Jan;67(1):530-42
pubmed: 7677960
J Neurosci. 2005 Apr 27;25(17):4396-405
pubmed: 15858066
J Neurovirol. 2005 Feb;11(1):82-7
pubmed: 15804965
J Gen Physiol. 2000 May;115(5):637-51
pubmed: 10779320
Biophys J. 2021 Jul 20;120(14):2805-2813
pubmed: 34197807
Nature. 2002 Dec 19-26;420(6917):853-9
pubmed: 12490958
Proc Natl Acad Sci U S A. 1984 Jun;81(12):3901-4
pubmed: 6328531
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14686-91
pubmed: 18791069
Sci Rep. 2021 Jun 4;11(1):11886
pubmed: 34088975
Food Chem Toxicol. 2021 Mar;149:112009
pubmed: 33503469
Neuroreport. 1997 Nov 10;8(16):3591-6
pubmed: 9427332
Immunol Lett. 2020 Aug;224:28-29
pubmed: 32522666
BMJ. 2022 Feb 16;376:o415
pubmed: 35172969
Toxicol Rep. 2020 Apr 30;7:658-663
pubmed: 32355638
C R Biol. 2020 Jun 05;343(1):33-39
pubmed: 32720486
Signal Transduct Target Ther. 2020 Dec 4;5(1):283
pubmed: 33277466
Intern Emerg Med. 2020 Aug;15(5):845-852
pubmed: 32385628
Arch Virol. 1990;114(3-4):265-9
pubmed: 2241576
mSphere. 2021 Aug 25;6(4):e0064721
pubmed: 34378982
Science. 1982 Jan 8;215(4529):182-4
pubmed: 7053569
Front Pharmacol. 2019 Apr 30;10:343
pubmed: 31114495
Science. 1984 Nov 16;226(4676):847-8
pubmed: 6494916
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Nature. 2021 Nov;599(7883):114-119
pubmed: 34488225
Neuron. 2016 Mar 2;89(5):948-55
pubmed: 26875622
Food Chem Toxicol. 2021 Jun;152:112184
pubmed: 33838172
J Mol Recognit. 1990 Apr;3(2):82-8
pubmed: 2361061
Nature. 2000 May 25;405(6785):458-62
pubmed: 10839541
Elife. 2022 Jan 13;11:
pubmed: 35023830
Mol Pharmacol. 1998 Feb;53(2):283-94
pubmed: 9463487