First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
26 10 2022
Historique:
received: 03 06 2022
accepted: 13 10 2022
entrez: 27 10 2022
pubmed: 28 10 2022
medline: 29 10 2022
Statut: epublish

Résumé

Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. Although the biological significance of polycationic homopoly(amino acid)s remains unclear, increasing attention has recently been focused on their potential use to achieve cellular internalization. Here, for the first time, we provide direct evidence that two representative bacterial polycationic isopeptides, ε-poly-L-α-lysine (ε-PαL) and ε-oligo-L-β-lysine (ε-OβL), were internalized into mammalian cells by direct cell-membrane penetration and then diffused throughout the cytosol. In this study, we used clickable ε-PαL and ε-OβL derivatives carrying a C-terminal azide group, which were enzymatically produced and then conjugated with a fluorescent dye to analyze subcellular localization. Interestingly, fluorescent proteins conjugated with the clickable ε-PαL or ε-OβL were also internalized into cells and diffused throughout the cytosol. Notably, a Cre recombinase conjugate with ε-PαL entered cells and mediated the Cre/loxP recombination, and ε-PαL was found to deliver a full-length IgG antibody to the cytosol and nucleus.

Identifiants

pubmed: 36289442
doi: 10.1038/s42003-022-04110-4
pii: 10.1038/s42003-022-04110-4
pmc: PMC9606270
doi:

Substances chimiques

Amino Acids 0
Lysine K3Z4F929H6
Fluorescent Dyes 0
Azides 0
polycations 0
Immunoglobulin G 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1132

Informations de copyright

© 2022. The Author(s).

Références

Hamano, Y., Arai, T., Ashiuchi, M. & Kino, K. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat. Prod. Rep. 30, 1087–1097 (2013).
pubmed: 23817633 doi: 10.1039/c3np70025a
Yamanaka, K., Maruyama, C., Takagi, H. & Hamano, Y. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat. Chem. Biol. 4, 766–772 (2008).
pubmed: 18997795 doi: 10.1038/nchembio.125
Maruyama, C. et al. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nat. Chem. Biol. 8, 791–797 (2012).
pubmed: 22820420 doi: 10.1038/nchembio.1040
Takehara, M., Saimura, M., Inaba, H. & Hirohara, H. Poly(gamma-L-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(epsilon-L-lysine) by two strains of Streptomyces celluloflavus. FEMS Microbiol. Lett. 286, 110–117 (2008).
pubmed: 18625024 doi: 10.1111/j.1574-6968.2008.01261.x
Ohkuma, H., Tenmyo, O., Konishi, M., Oki, T. & Kawaguchi, H. BMY-28190, a novel antiviral antibiotic complex. J. Antibiot. (Tokyo) 41, 849–854 (1988).
doi: 10.7164/antibiotics.41.849
Xia, J., Xu, H., Feng, X., Xu, Z. & Chi, B. Poly(L-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(epsilon-L-lysine) by Streptomyces albulus PD-1. Appl. Microbiol. Biotechnol. 97, 7597–7605 (2013).
pubmed: 23775267 doi: 10.1007/s00253-013-4936-4
Yamanaka, K. et al. Discovery of a polyamino acid antibiotic solely comprising l-beta-lysine by potential producer prioritization-guided genome mining. ACS Chem. Biol. 17, 171–180 (2022).
pubmed: 34886659 doi: 10.1021/acschembio.1c00832
Cao, M., Feng, J., Sirisansaneeyakul, S., Song, C. & Chisti, Y. Genetic and metabolic engineering for microbial production of poly-gamma-glutamic acid. Biotechnol. Adv. 36, 1424–1433 (2018).
pubmed: 29852203 doi: 10.1016/j.biotechadv.2018.05.006
Du, J., Li, L. & Zhou, S. Microbial production of cyanophycin: from enzymes to biopolymers. Biotechnol. Adv. 37, 107400 (2019).
pubmed: 31095967 doi: 10.1016/j.biotechadv.2019.05.006
Sharon, I. et al. Structures and function of the amino acid polymerase cyanophycin synthetase. Nat. Chem. Biol. 17, 1101–1110 (2021).
pubmed: 34385683 doi: 10.1038/s41589-021-00854-y
Takehara, M. et al. Characterization of an L-alpha,beta-diaminopropionic acid polymer with comb-like structure isolated from a poly(epsilon-L-lysine)-producing Streptomyces sp. Appl. Microbiol. Biotechnol. 105, 3145–3157 (2021).
pubmed: 33846822 doi: 10.1007/s00253-021-11257-3
Heitz, F., Morris, M. C. & Divita, G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol. 157, 195–206 (2009).
pubmed: 19309362 pmcid: 2697800 doi: 10.1111/j.1476-5381.2009.00057.x
Wang, F. et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 174, 126–136 (2014).
pubmed: 24291335 doi: 10.1016/j.jconrel.2013.11.020
Takeuchi, T. & Futaki, S. Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem. Pharm. Bull. (Tokyo) 64, 1431–1437 (2016).
doi: 10.1248/cpb.c16-00505
Guidotti, G., Brambilla, L. & Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017).
pubmed: 28209404 doi: 10.1016/j.tips.2017.01.003
Patel, S. G. et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 9, 6298 (2019).
pubmed: 31000738 pmcid: 6472342 doi: 10.1038/s41598-019-42456-8
Dougherty, P. G., Sahni, A. & Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev. 119, 10241–10287 (2019).
pubmed: 31083977 pmcid: 6739158 doi: 10.1021/acs.chemrev.9b00008
Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).
pubmed: 28754944 doi: 10.1038/nchem.2779
Mandal, S., Mann, G., Satish, G. & Brik, A. Enhanced live-cell delivery of synthetic proteins assisted by cell-penetrating peptides fused to DABCYL. Angew. Chem. Int. Ed. Engl. 60, 7333–7343 (2021).
pubmed: 33615660 pmcid: 8048964 doi: 10.1002/anie.202016208
Schneider, A. F. L., Kithil, M., Cardoso, M. C., Lehmann, M. & Hackenberger, C. P. R. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat. Chem. 13, 530–539 (2021).
pubmed: 33859390 doi: 10.1038/s41557-021-00661-x
Tietz, O., Cortezon-Tamarit, F., Chalk, R., Able, S. & Vallis, K. A. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 14, 284–293 (2022).
pubmed: 35145246 doi: 10.1038/s41557-021-00866-0
Kito, M., Onji, Y., Yoshida, T. & Nagasawa, T. Occurrence of epsilon-poly-L-lysine-degrading enzyme in epsilon-poly-L-lysine-tolerant Sphingobacterium multivorum OJ10: purification and characterization. FEMS Microbiol. Lett. 207, 147–151 (2002).
pubmed: 11958932
Huang, D., Korolev, N., Eom, K. D., Tam, J. P. & Nordenskiold, L. Design and biophysical characterization of novel polycationic epsilon-peptides for DNA compaction and delivery. Biomacromolecules 9, 321–330 (2008).
pubmed: 18047291 doi: 10.1021/bm700882g
Mandal, H. et al. epsilon-Poly-l-Lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J. Pharm. 542, 142–152 (2018).
pubmed: 29550568 doi: 10.1016/j.ijpharm.2018.03.021
Kim, K. et al. Controlling complexation/decomplexation and sizes of polymer-based electrostatic pDNA polyplexes is one of the key factors in effective transfection. Colloids Surf. B. Biointerfaces 184, 110497 (2019).
pubmed: 31536938 doi: 10.1016/j.colsurfb.2019.110497
Kim, K. et al. Effects of decomplexation rates on ternary gene complex transfection with alpha-poly(L-lysine) or epsilon-poly(L-lysine) as a decomplexation controller in an easy-to-transfect cell or a hard-to-transfect cell. Pharmaceutics 12 (2020).
Gao, B. et al. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater. Sci. 7, 3307–3319 (2019).
pubmed: 31204746 doi: 10.1039/C9BM00451C
Niu, Z., Thielen, I., Barnett, A., Loveday, S. M. & Singh, H. epsilon-Polylysine and beta-cyclodextrin assembling as delivery systems for gastric protection of proteins and possibility to enhance intestinal permeation. J. Colloid Interface Sci. 546, 312–323 (2019).
pubmed: 30927595 doi: 10.1016/j.jcis.2019.03.006
Shi, C. et al. Sonochemical preparation of folic acid-decorated reductive-responsive epsilon-poly-L-lysine-based microcapsules for targeted drug delivery and reductive-triggered release. Mater. Sci. Eng. C. Mater. Biol. Appl. 106, 110251 (2020).
pubmed: 31753346 doi: 10.1016/j.msec.2019.110251
Pujara, N. et al. pH - Responsive colloidal carriers assembled from beta-lactoglobulin and epsilon poly-L-lysine for oral drug delivery. J. Colloid Interface Sci. 589, 45–55 (2021).
pubmed: 33450459 doi: 10.1016/j.jcis.2020.12.054
Mondragon, L. et al. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with epsilon-poly-L-lysine. Chem. (Easton) 20, 5271–5281 (2014).
Nishikawa, M. & Ogawa, K. Inhibition of epsilon-poly-L-lysine biosynthesis in Streptomycetaceae bacteria by short-chain polyols. Appl. Environ. Microbiol. 72, 2306–2312 (2006).
pubmed: 16597924 pmcid: 1448994 doi: 10.1128/AEM.72.4.2306-2312.2006
Fretz, M. M. et al. Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem. J. 403, 335–342 (2007).
pubmed: 17217340 pmcid: 1874247 doi: 10.1042/BJ20061808
Kosuge, M., Takeuchi, T., Nakase, I., Jones, A. T. & Futaki, S. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug. Chem. 19, 656–664 (2008).
pubmed: 18269225 doi: 10.1021/bc700289w
Gibson, A. E., Noel, R. J., Herlihy, J. T. & Ward, W. F. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am. J. Physiol. 257, C182–C184 (1989).
pubmed: 2475026 doi: 10.1152/ajpcell.1989.257.2.C182
Koivusalo, M. et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188, 547–563 (2010).
pubmed: 20156964 pmcid: 2828922 doi: 10.1083/jcb.200908086
Wallbrecher, R. et al. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J. Control. Release 256, 68–78 (2017).
pubmed: 28411183 doi: 10.1016/j.jconrel.2017.04.013
Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R. & Brock, R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8, 848–866 (2007).
pubmed: 17587406 doi: 10.1111/j.1600-0854.2007.00572.x
Maeda, S., Kunimoto, K.-K., Sasaki, C., Kuwae, A. & Hanai, K. Characterization of microbial poly (ε-l-lysine) by FT-IR, Raman and solid state 13C NMR spectroscopies. J. Mol. Struct. 655, 149–155 (2003).
doi: 10.1016/S0022-2860(03)00218-7
Liu, J. N. et al. Structural changes and antibacterial activity of epsilon-poly-L-lysine in response to pH and phase transition and their mechanisms. J. Agric Food Chem. 68, 1101–1109 (2020).
pubmed: 31904947 doi: 10.1021/acs.jafc.9b07524
Niamsuphap, S. et al. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin. Drug Deliv. 17, 1189–1211 (2020).
pubmed: 32524851 doi: 10.1080/17425247.2020.1781088
Hiraki, J. et al. Use of ADME studies to confirm the safety of e-polylysine as a preservative in food. Regulatory Toxicol. Pharmacol. 37, 328–340 (2003).
doi: 10.1016/S0273-2300(03)00029-1
Franke, J. & Hertweck, C. Biomimetic thioesters as probes for enzymatic assembly lines: synthesis, applications, and challenges. Cell Chem. Biol. 23, 1179–1192 (2016).
pubmed: 27693058 doi: 10.1016/j.chembiol.2016.08.014
Attwood, M. M., Jonsson, J., Rask-Andersen, M. & Schioth, H. B. Soluble ligands as drug targets. Nat. Rev. Drug Discov. 19, 695–710 (2020).
pubmed: 32873970 doi: 10.1038/s41573-020-0078-4
Lee, H. J., Huang, Y. W., Chiou, S. H. & Aronstam, R. S. Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells. Sci. Rep. 9, 9398 (2019).
pubmed: 31253836 pmcid: 6599048 doi: 10.1038/s41598-019-45830-8
Zheng, M. et al. Poly(alpha-L-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact. Mater. 6, 1878–1909 (2021).
pubmed: 33364529 doi: 10.1016/j.bioactmat.2020.12.001
Gong, Z., Walls, M. T., Karley, A. N. & Karlsson, A. J. Effect of a flexible linker on recombinant expression of cell-penetrating peptide fusion proteins and their translocation into fungal cells. Mol. Biotechnol. 58, 838–849 (2016).
pubmed: 27734193 doi: 10.1007/s12033-016-9983-5
Park, S. E., Sajid, M. I., Parang, K. & Tiwari, R. K. Cyclic cell-penetrating peptides as efficient intracellular drug delivery tools. Mol. Pharm. 16, 3727–3743 (2019).
pubmed: 31329448 doi: 10.1021/acs.molpharmaceut.9b00633
Nischan, N. et al. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew. Chem. Int. Ed. Engl. 54, 1950–1953 (2015).
pubmed: 25521313 doi: 10.1002/anie.201410006
Sun, Y. et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).
pubmed: 35115657 doi: 10.1038/s41557-021-00854-4
Iwata, T. et al. Liquid droplet formation and facile cytosolic translocation of IgG in the presence of attenuated cationic amphiphilic lytic peptides. Angew. Chem. Int. Ed. Engl. 60, 19804–19812 (2021).
pubmed: 34114295 doi: 10.1002/anie.202105527
Suroto, D. A., Kitani, S., Arai, M., Ikeda, H. & Nihira, T. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis. PLoS One 13, e0190973 (2018).
pubmed: 29324854 pmcid: 5764310 doi: 10.1371/journal.pone.0190973
Yamanaka, K. et al. Mechanism of epsilon-poly-L-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-L-lysine-degrading enzyme. Appl. Environ. Microbiol. 76, 5669–5675 (2010).
pubmed: 20601519 pmcid: 2935060 doi: 10.1128/AEM.00853-10
Katano, H., Yoneoka, T., Kito, N., Maruyama, C. & Hamano, Y. Separation and purification of epsilon-poly-L-lysine from the culture broth based on precipitation with the tetraphenylborate anion. Anal. Sci. 28, 1153–1157 (2012).
pubmed: 23232234 doi: 10.2116/analsci.28.1153
Itzhaki, R. F. Colorimetric method for estimating polylysine and polyarginine. Anal. Biochem. 50, 569–574 (1972).
pubmed: 4646067 doi: 10.1016/0003-2697(72)90067-X
Yamanaka, K. et al. Development of a recombinant epsilon-poly-L-lysine synthetase expression system to perform mutational analysis. J. Biosci. Bioeng. 111, 646–649 (2011).
pubmed: 21388875 doi: 10.1016/j.jbiosc.2011.01.020
Tateaki, W., Hiroshi, U., Tadashi, T. & Tetsuo, S. Synthesis of acyl derivatives of β-lysine for peptide synthesis. Bull. Chem. Soc. Jpn. 48, 2401–2402 (1975).
doi: 10.1246/bcsj.48.2401

Auteurs

Yamato Takeuchi (Y)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.

Kazunori Ushimaru (K)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.

Kohei Kaneda (K)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.

Chitose Maruyama (C)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
MicrobeChem Inc., Eiheiji-cho, Fukui, 910-1195, Japan.

Takashi Ito (T)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.

Kazuya Yamanaka (K)

Department of Life Science & Technology, Kansai University, Suita, Osaka, 564-8680, Japan.

Yasushi Ogasawara (Y)

Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Hajime Katano (H)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.

Yasuo Kato (Y)

Department of Biotechnology, Toyama Prefectural University, Imizu-shi, Toyama, 939-0398, Japan.

Tohru Dairi (T)

Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Yoshimitsu Hamano (Y)

Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan. hamano@fpu.ac.jp.
Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan. hamano@fpu.ac.jp.
MicrobeChem Inc., Eiheiji-cho, Fukui, 910-1195, Japan. hamano@fpu.ac.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH