First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
26 10 2022
26 10 2022
Historique:
received:
03
06
2022
accepted:
13
10
2022
entrez:
27
10
2022
pubmed:
28
10
2022
medline:
29
10
2022
Statut:
epublish
Résumé
Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. Although the biological significance of polycationic homopoly(amino acid)s remains unclear, increasing attention has recently been focused on their potential use to achieve cellular internalization. Here, for the first time, we provide direct evidence that two representative bacterial polycationic isopeptides, ε-poly-L-α-lysine (ε-PαL) and ε-oligo-L-β-lysine (ε-OβL), were internalized into mammalian cells by direct cell-membrane penetration and then diffused throughout the cytosol. In this study, we used clickable ε-PαL and ε-OβL derivatives carrying a C-terminal azide group, which were enzymatically produced and then conjugated with a fluorescent dye to analyze subcellular localization. Interestingly, fluorescent proteins conjugated with the clickable ε-PαL or ε-OβL were also internalized into cells and diffused throughout the cytosol. Notably, a Cre recombinase conjugate with ε-PαL entered cells and mediated the Cre/loxP recombination, and ε-PαL was found to deliver a full-length IgG antibody to the cytosol and nucleus.
Identifiants
pubmed: 36289442
doi: 10.1038/s42003-022-04110-4
pii: 10.1038/s42003-022-04110-4
pmc: PMC9606270
doi:
Substances chimiques
Amino Acids
0
Lysine
K3Z4F929H6
Fluorescent Dyes
0
Azides
0
polycations
0
Immunoglobulin G
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1132Informations de copyright
© 2022. The Author(s).
Références
Hamano, Y., Arai, T., Ashiuchi, M. & Kino, K. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat. Prod. Rep. 30, 1087–1097 (2013).
pubmed: 23817633
doi: 10.1039/c3np70025a
Yamanaka, K., Maruyama, C., Takagi, H. & Hamano, Y. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat. Chem. Biol. 4, 766–772 (2008).
pubmed: 18997795
doi: 10.1038/nchembio.125
Maruyama, C. et al. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nat. Chem. Biol. 8, 791–797 (2012).
pubmed: 22820420
doi: 10.1038/nchembio.1040
Takehara, M., Saimura, M., Inaba, H. & Hirohara, H. Poly(gamma-L-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(epsilon-L-lysine) by two strains of Streptomyces celluloflavus. FEMS Microbiol. Lett. 286, 110–117 (2008).
pubmed: 18625024
doi: 10.1111/j.1574-6968.2008.01261.x
Ohkuma, H., Tenmyo, O., Konishi, M., Oki, T. & Kawaguchi, H. BMY-28190, a novel antiviral antibiotic complex. J. Antibiot. (Tokyo) 41, 849–854 (1988).
doi: 10.7164/antibiotics.41.849
Xia, J., Xu, H., Feng, X., Xu, Z. & Chi, B. Poly(L-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(epsilon-L-lysine) by Streptomyces albulus PD-1. Appl. Microbiol. Biotechnol. 97, 7597–7605 (2013).
pubmed: 23775267
doi: 10.1007/s00253-013-4936-4
Yamanaka, K. et al. Discovery of a polyamino acid antibiotic solely comprising l-beta-lysine by potential producer prioritization-guided genome mining. ACS Chem. Biol. 17, 171–180 (2022).
pubmed: 34886659
doi: 10.1021/acschembio.1c00832
Cao, M., Feng, J., Sirisansaneeyakul, S., Song, C. & Chisti, Y. Genetic and metabolic engineering for microbial production of poly-gamma-glutamic acid. Biotechnol. Adv. 36, 1424–1433 (2018).
pubmed: 29852203
doi: 10.1016/j.biotechadv.2018.05.006
Du, J., Li, L. & Zhou, S. Microbial production of cyanophycin: from enzymes to biopolymers. Biotechnol. Adv. 37, 107400 (2019).
pubmed: 31095967
doi: 10.1016/j.biotechadv.2019.05.006
Sharon, I. et al. Structures and function of the amino acid polymerase cyanophycin synthetase. Nat. Chem. Biol. 17, 1101–1110 (2021).
pubmed: 34385683
doi: 10.1038/s41589-021-00854-y
Takehara, M. et al. Characterization of an L-alpha,beta-diaminopropionic acid polymer with comb-like structure isolated from a poly(epsilon-L-lysine)-producing Streptomyces sp. Appl. Microbiol. Biotechnol. 105, 3145–3157 (2021).
pubmed: 33846822
doi: 10.1007/s00253-021-11257-3
Heitz, F., Morris, M. C. & Divita, G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol. 157, 195–206 (2009).
pubmed: 19309362
pmcid: 2697800
doi: 10.1111/j.1476-5381.2009.00057.x
Wang, F. et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 174, 126–136 (2014).
pubmed: 24291335
doi: 10.1016/j.jconrel.2013.11.020
Takeuchi, T. & Futaki, S. Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem. Pharm. Bull. (Tokyo) 64, 1431–1437 (2016).
doi: 10.1248/cpb.c16-00505
Guidotti, G., Brambilla, L. & Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017).
pubmed: 28209404
doi: 10.1016/j.tips.2017.01.003
Patel, S. G. et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 9, 6298 (2019).
pubmed: 31000738
pmcid: 6472342
doi: 10.1038/s41598-019-42456-8
Dougherty, P. G., Sahni, A. & Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev. 119, 10241–10287 (2019).
pubmed: 31083977
pmcid: 6739158
doi: 10.1021/acs.chemrev.9b00008
Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).
pubmed: 28754944
doi: 10.1038/nchem.2779
Mandal, S., Mann, G., Satish, G. & Brik, A. Enhanced live-cell delivery of synthetic proteins assisted by cell-penetrating peptides fused to DABCYL. Angew. Chem. Int. Ed. Engl. 60, 7333–7343 (2021).
pubmed: 33615660
pmcid: 8048964
doi: 10.1002/anie.202016208
Schneider, A. F. L., Kithil, M., Cardoso, M. C., Lehmann, M. & Hackenberger, C. P. R. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat. Chem. 13, 530–539 (2021).
pubmed: 33859390
doi: 10.1038/s41557-021-00661-x
Tietz, O., Cortezon-Tamarit, F., Chalk, R., Able, S. & Vallis, K. A. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 14, 284–293 (2022).
pubmed: 35145246
doi: 10.1038/s41557-021-00866-0
Kito, M., Onji, Y., Yoshida, T. & Nagasawa, T. Occurrence of epsilon-poly-L-lysine-degrading enzyme in epsilon-poly-L-lysine-tolerant Sphingobacterium multivorum OJ10: purification and characterization. FEMS Microbiol. Lett. 207, 147–151 (2002).
pubmed: 11958932
Huang, D., Korolev, N., Eom, K. D., Tam, J. P. & Nordenskiold, L. Design and biophysical characterization of novel polycationic epsilon-peptides for DNA compaction and delivery. Biomacromolecules 9, 321–330 (2008).
pubmed: 18047291
doi: 10.1021/bm700882g
Mandal, H. et al. epsilon-Poly-l-Lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J. Pharm. 542, 142–152 (2018).
pubmed: 29550568
doi: 10.1016/j.ijpharm.2018.03.021
Kim, K. et al. Controlling complexation/decomplexation and sizes of polymer-based electrostatic pDNA polyplexes is one of the key factors in effective transfection. Colloids Surf. B. Biointerfaces 184, 110497 (2019).
pubmed: 31536938
doi: 10.1016/j.colsurfb.2019.110497
Kim, K. et al. Effects of decomplexation rates on ternary gene complex transfection with alpha-poly(L-lysine) or epsilon-poly(L-lysine) as a decomplexation controller in an easy-to-transfect cell or a hard-to-transfect cell. Pharmaceutics 12 (2020).
Gao, B. et al. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater. Sci. 7, 3307–3319 (2019).
pubmed: 31204746
doi: 10.1039/C9BM00451C
Niu, Z., Thielen, I., Barnett, A., Loveday, S. M. & Singh, H. epsilon-Polylysine and beta-cyclodextrin assembling as delivery systems for gastric protection of proteins and possibility to enhance intestinal permeation. J. Colloid Interface Sci. 546, 312–323 (2019).
pubmed: 30927595
doi: 10.1016/j.jcis.2019.03.006
Shi, C. et al. Sonochemical preparation of folic acid-decorated reductive-responsive epsilon-poly-L-lysine-based microcapsules for targeted drug delivery and reductive-triggered release. Mater. Sci. Eng. C. Mater. Biol. Appl. 106, 110251 (2020).
pubmed: 31753346
doi: 10.1016/j.msec.2019.110251
Pujara, N. et al. pH - Responsive colloidal carriers assembled from beta-lactoglobulin and epsilon poly-L-lysine for oral drug delivery. J. Colloid Interface Sci. 589, 45–55 (2021).
pubmed: 33450459
doi: 10.1016/j.jcis.2020.12.054
Mondragon, L. et al. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with epsilon-poly-L-lysine. Chem. (Easton) 20, 5271–5281 (2014).
Nishikawa, M. & Ogawa, K. Inhibition of epsilon-poly-L-lysine biosynthesis in Streptomycetaceae bacteria by short-chain polyols. Appl. Environ. Microbiol. 72, 2306–2312 (2006).
pubmed: 16597924
pmcid: 1448994
doi: 10.1128/AEM.72.4.2306-2312.2006
Fretz, M. M. et al. Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem. J. 403, 335–342 (2007).
pubmed: 17217340
pmcid: 1874247
doi: 10.1042/BJ20061808
Kosuge, M., Takeuchi, T., Nakase, I., Jones, A. T. & Futaki, S. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug. Chem. 19, 656–664 (2008).
pubmed: 18269225
doi: 10.1021/bc700289w
Gibson, A. E., Noel, R. J., Herlihy, J. T. & Ward, W. F. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am. J. Physiol. 257, C182–C184 (1989).
pubmed: 2475026
doi: 10.1152/ajpcell.1989.257.2.C182
Koivusalo, M. et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188, 547–563 (2010).
pubmed: 20156964
pmcid: 2828922
doi: 10.1083/jcb.200908086
Wallbrecher, R. et al. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J. Control. Release 256, 68–78 (2017).
pubmed: 28411183
doi: 10.1016/j.jconrel.2017.04.013
Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R. & Brock, R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8, 848–866 (2007).
pubmed: 17587406
doi: 10.1111/j.1600-0854.2007.00572.x
Maeda, S., Kunimoto, K.-K., Sasaki, C., Kuwae, A. & Hanai, K. Characterization of microbial poly (ε-l-lysine) by FT-IR, Raman and solid state 13C NMR spectroscopies. J. Mol. Struct. 655, 149–155 (2003).
doi: 10.1016/S0022-2860(03)00218-7
Liu, J. N. et al. Structural changes and antibacterial activity of epsilon-poly-L-lysine in response to pH and phase transition and their mechanisms. J. Agric Food Chem. 68, 1101–1109 (2020).
pubmed: 31904947
doi: 10.1021/acs.jafc.9b07524
Niamsuphap, S. et al. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin. Drug Deliv. 17, 1189–1211 (2020).
pubmed: 32524851
doi: 10.1080/17425247.2020.1781088
Hiraki, J. et al. Use of ADME studies to confirm the safety of e-polylysine as a preservative in food. Regulatory Toxicol. Pharmacol. 37, 328–340 (2003).
doi: 10.1016/S0273-2300(03)00029-1
Franke, J. & Hertweck, C. Biomimetic thioesters as probes for enzymatic assembly lines: synthesis, applications, and challenges. Cell Chem. Biol. 23, 1179–1192 (2016).
pubmed: 27693058
doi: 10.1016/j.chembiol.2016.08.014
Attwood, M. M., Jonsson, J., Rask-Andersen, M. & Schioth, H. B. Soluble ligands as drug targets. Nat. Rev. Drug Discov. 19, 695–710 (2020).
pubmed: 32873970
doi: 10.1038/s41573-020-0078-4
Lee, H. J., Huang, Y. W., Chiou, S. H. & Aronstam, R. S. Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells. Sci. Rep. 9, 9398 (2019).
pubmed: 31253836
pmcid: 6599048
doi: 10.1038/s41598-019-45830-8
Zheng, M. et al. Poly(alpha-L-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact. Mater. 6, 1878–1909 (2021).
pubmed: 33364529
doi: 10.1016/j.bioactmat.2020.12.001
Gong, Z., Walls, M. T., Karley, A. N. & Karlsson, A. J. Effect of a flexible linker on recombinant expression of cell-penetrating peptide fusion proteins and their translocation into fungal cells. Mol. Biotechnol. 58, 838–849 (2016).
pubmed: 27734193
doi: 10.1007/s12033-016-9983-5
Park, S. E., Sajid, M. I., Parang, K. & Tiwari, R. K. Cyclic cell-penetrating peptides as efficient intracellular drug delivery tools. Mol. Pharm. 16, 3727–3743 (2019).
pubmed: 31329448
doi: 10.1021/acs.molpharmaceut.9b00633
Nischan, N. et al. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew. Chem. Int. Ed. Engl. 54, 1950–1953 (2015).
pubmed: 25521313
doi: 10.1002/anie.201410006
Sun, Y. et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).
pubmed: 35115657
doi: 10.1038/s41557-021-00854-4
Iwata, T. et al. Liquid droplet formation and facile cytosolic translocation of IgG in the presence of attenuated cationic amphiphilic lytic peptides. Angew. Chem. Int. Ed. Engl. 60, 19804–19812 (2021).
pubmed: 34114295
doi: 10.1002/anie.202105527
Suroto, D. A., Kitani, S., Arai, M., Ikeda, H. & Nihira, T. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis. PLoS One 13, e0190973 (2018).
pubmed: 29324854
pmcid: 5764310
doi: 10.1371/journal.pone.0190973
Yamanaka, K. et al. Mechanism of epsilon-poly-L-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-L-lysine-degrading enzyme. Appl. Environ. Microbiol. 76, 5669–5675 (2010).
pubmed: 20601519
pmcid: 2935060
doi: 10.1128/AEM.00853-10
Katano, H., Yoneoka, T., Kito, N., Maruyama, C. & Hamano, Y. Separation and purification of epsilon-poly-L-lysine from the culture broth based on precipitation with the tetraphenylborate anion. Anal. Sci. 28, 1153–1157 (2012).
pubmed: 23232234
doi: 10.2116/analsci.28.1153
Itzhaki, R. F. Colorimetric method for estimating polylysine and polyarginine. Anal. Biochem. 50, 569–574 (1972).
pubmed: 4646067
doi: 10.1016/0003-2697(72)90067-X
Yamanaka, K. et al. Development of a recombinant epsilon-poly-L-lysine synthetase expression system to perform mutational analysis. J. Biosci. Bioeng. 111, 646–649 (2011).
pubmed: 21388875
doi: 10.1016/j.jbiosc.2011.01.020
Tateaki, W., Hiroshi, U., Tadashi, T. & Tetsuo, S. Synthesis of acyl derivatives of β-lysine for peptide synthesis. Bull. Chem. Soc. Jpn. 48, 2401–2402 (1975).
doi: 10.1246/bcsj.48.2401