Motor Function Characteristics of Adults With Late-Onset Pompe Disease: A Systematic Scoping Review.


Journal

Neurology
ISSN: 1526-632X
Titre abrégé: Neurology
Pays: United States
ID NLM: 0401060

Informations de publication

Date de publication:
03 01 2023
Historique:
received: 04 04 2022
accepted: 16 08 2022
pubmed: 28 10 2022
medline: 29 12 2022
entrez: 27 10 2022
Statut: ppublish

Résumé

Pompe disease is a rare neuromuscular disease caused by a deficiency of the lysosomal enzyme acid α-glucosidase. The late-onset Pompe disease (LOPD) in adults is characterized by weakness of ventilatory, axial, and proximal extremity muscles. These muscle impairments progressively impair various motor functions such as locomotion and postural control. Nearly 87% of adults with LOPD (aLOPD) report walking problems, and more than 80% report instability and falls. Knowledge of these motor functions is now sufficient to provide a clear and comprehensive overview of motor function in aLOPD. Therefore, this scoping review aimed to summarize current knowledge about motor function in aLOPD. It specifically targeted neuromuscular performance, locomotion, and postural control. A systematic search in MEDLINE (through PubMed), EMBASE, and Cochrane databases was conducted until May 2021. We included studies providing primary data on at least 4 participants, exploring neuromuscular performance, locomotion, and/or postural control in aLOPD. Risk of bias analysis was assessed using tools appropriate to the study designs; the risk of bias 2 (Cochrane tool) for randomized controlled trials, risk of bias in Nonrandomized Studies - of Interventions (Cochrane tool) for nonrandomized interventional trials, and the Newcastle-Ottawa Scale for cohort studies and case-control studies. The search identified 2,885 articles. After screening, 58 articles were included in the analysis. In these studies, 88% explored locomotion, 83% neuromuscular performance, and 3% postural control. This review showed that aLOPD experience symmetrical weakness, concerning especially the hip and lumbar muscles. Locomotor activities are limited with a distance reduction, spatiotemporal gait parameter modification, and an increased pelvic drop and tilt. Balance disorders are also observed especially in the anteroposterior direction. We performed the first review on motor function characteristics in aLOPD. Although a significant amount of knowledge was synthesized in this review, our study also highlighted the lack of current research on this topic. Maximal muscle strength was the only neuromuscular performance studied, and gait biomechanics and postural control were poorly explored in LOPD. Relationships between the degree of muscle weakness and motor function alterations also remain to be determined in aLOPD.

Sections du résumé

BACKGROUND AND OBJECTIVES
Pompe disease is a rare neuromuscular disease caused by a deficiency of the lysosomal enzyme acid α-glucosidase. The late-onset Pompe disease (LOPD) in adults is characterized by weakness of ventilatory, axial, and proximal extremity muscles. These muscle impairments progressively impair various motor functions such as locomotion and postural control. Nearly 87% of adults with LOPD (aLOPD) report walking problems, and more than 80% report instability and falls. Knowledge of these motor functions is now sufficient to provide a clear and comprehensive overview of motor function in aLOPD. Therefore, this scoping review aimed to summarize current knowledge about motor function in aLOPD. It specifically targeted neuromuscular performance, locomotion, and postural control.
METHODS
A systematic search in MEDLINE (through PubMed), EMBASE, and Cochrane databases was conducted until May 2021. We included studies providing primary data on at least 4 participants, exploring neuromuscular performance, locomotion, and/or postural control in aLOPD. Risk of bias analysis was assessed using tools appropriate to the study designs; the risk of bias 2 (Cochrane tool) for randomized controlled trials, risk of bias in Nonrandomized Studies - of Interventions (Cochrane tool) for nonrandomized interventional trials, and the Newcastle-Ottawa Scale for cohort studies and case-control studies.
RESULTS
The search identified 2,885 articles. After screening, 58 articles were included in the analysis. In these studies, 88% explored locomotion, 83% neuromuscular performance, and 3% postural control. This review showed that aLOPD experience symmetrical weakness, concerning especially the hip and lumbar muscles. Locomotor activities are limited with a distance reduction, spatiotemporal gait parameter modification, and an increased pelvic drop and tilt. Balance disorders are also observed especially in the anteroposterior direction.
DISCUSSION
We performed the first review on motor function characteristics in aLOPD. Although a significant amount of knowledge was synthesized in this review, our study also highlighted the lack of current research on this topic. Maximal muscle strength was the only neuromuscular performance studied, and gait biomechanics and postural control were poorly explored in LOPD. Relationships between the degree of muscle weakness and motor function alterations also remain to be determined in aLOPD.

Identifiants

pubmed: 36302669
pii: WNL.0000000000201333
doi: 10.1212/WNL.0000000000201333
doi:

Substances chimiques

alpha-Glucosidases EC 3.2.1.20

Types de publication

Journal Article Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e72-e83

Informations de copyright

© 2022 American Academy of Neurology.

Auteurs

Théo Maulet (T)

From the Physiology and Functional Exploration Department (T.M., C.B.), Raymond Poincaré Hospital, APHP, Garches, France; End: Icap Laboratory (T.M., P.L.), Inserm Unit 1179, UVSQ, France; Paris-Saclay University (T.M., C.B.), UVSQ, Research Unit ERPHAN, Versailles, France; Paris Cité University (C.W.), DGDBM, France; Neurology Department (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches; and Nantes University (T.C.), Movement-Interactions-Performance, MIP, Nantes, France. theo.maulet@aphp.fr.

Celine Bonnyaud (C)

From the Physiology and Functional Exploration Department (T.M., C.B.), Raymond Poincaré Hospital, APHP, Garches, France; End: Icap Laboratory (T.M., P.L.), Inserm Unit 1179, UVSQ, France; Paris-Saclay University (T.M., C.B.), UVSQ, Research Unit ERPHAN, Versailles, France; Paris Cité University (C.W.), DGDBM, France; Neurology Department (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches; and Nantes University (T.C.), Movement-Interactions-Performance, MIP, Nantes, France.

Catherine Weill (C)

From the Physiology and Functional Exploration Department (T.M., C.B.), Raymond Poincaré Hospital, APHP, Garches, France; End: Icap Laboratory (T.M., P.L.), Inserm Unit 1179, UVSQ, France; Paris-Saclay University (T.M., C.B.), UVSQ, Research Unit ERPHAN, Versailles, France; Paris Cité University (C.W.), DGDBM, France; Neurology Department (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches; and Nantes University (T.C.), Movement-Interactions-Performance, MIP, Nantes, France.

Pascal Laforêt (P)

From the Physiology and Functional Exploration Department (T.M., C.B.), Raymond Poincaré Hospital, APHP, Garches, France; End: Icap Laboratory (T.M., P.L.), Inserm Unit 1179, UVSQ, France; Paris-Saclay University (T.M., C.B.), UVSQ, Research Unit ERPHAN, Versailles, France; Paris Cité University (C.W.), DGDBM, France; Neurology Department (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches; and Nantes University (T.C.), Movement-Interactions-Performance, MIP, Nantes, France.

Thomas Cattagni (T)

From the Physiology and Functional Exploration Department (T.M., C.B.), Raymond Poincaré Hospital, APHP, Garches, France; End: Icap Laboratory (T.M., P.L.), Inserm Unit 1179, UVSQ, France; Paris-Saclay University (T.M., C.B.), UVSQ, Research Unit ERPHAN, Versailles, France; Paris Cité University (C.W.), DGDBM, France; Neurology Department (P.L.), Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches; and Nantes University (T.C.), Movement-Interactions-Performance, MIP, Nantes, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH