Intramyocardial hemorrhage drives fatty degeneration of infarcted myocardium.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 10 2022
Historique:
received: 31 10 2020
accepted: 03 10 2022
entrez: 27 10 2022
pubmed: 28 10 2022
medline: 1 11 2022
Statut: epublish

Résumé

Sudden blockage of arteries supplying the heart muscle contributes to millions of heart attacks (myocardial infarction, MI) around the world. Although re-opening these arteries (reperfusion) saves MI patients from immediate death, approximately 50% of these patients go on to develop chronic heart failure (CHF) and die within a 5-year period; however, why some patients accelerate towards CHF while others do not remains unclear. Here we show, using large animal models of reperfused MI, that intramyocardial hemorrhage - the most damaging form of reperfusion injury (evident in nearly 40% of reperfused ST-elevation MI patients) - drives delayed infarct healing and is centrally responsible for continuous fatty degeneration of the infarcted myocardium contributing to adverse remodeling of the heart. Specifically, we show that the fatty degeneration of the hemorrhagic MI zone stems from iron-induced macrophage activation, lipid peroxidation, foam cell formation, ceroid production, foam cell apoptosis and iron recycling. We also demonstrate that timely reduction of iron within the hemorrhagic MI zone reduces fatty infiltration and directs the heart towards favorable remodeling. Collectively, our findings elucidate why some, but not all, MIs are destined to CHF and help define a potential therapeutic strategy to mitigate post-MI CHF independent of MI size.

Identifiants

pubmed: 36302906
doi: 10.1038/s41467-022-33776-x
pii: 10.1038/s41467-022-33776-x
pmc: PMC9613644
doi:

Substances chimiques

Iron E1UOL152H7

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6394

Subventions

Organisme : NHLBI NIH HHS
ID : R00 HL124323
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL133407
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL136578
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL147133
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Benjamin, E. J. et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139, e56–e528 (2019).
pubmed: 30700139 doi: 10.1161/CIR.0000000000000659
Levy, D. et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 347, 1397–1402 (2002).
pubmed: 12409541 doi: 10.1056/NEJMoa020265
Eitel, I. et al. Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ. Cardiovasc. Imaging 4, 354–362 (2011).
pubmed: 21518773 doi: 10.1161/CIRCIMAGING.110.960500
Carrick, D. et al. Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: relation to microvascular obstruction and prognostic significance. Circ. Cardiovasc. Imaging 9, e004148 (2016).
pubmed: 26763281 pmcid: 4718183 doi: 10.1161/CIRCIMAGING.115.004148
Ghugre, N. R. et al. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn. Reson. Med. 66, 1129–1141 (2011).
pubmed: 21337425 doi: 10.1002/mrm.22855
Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).
pubmed: 17855673 doi: 10.1056/NEJMra071667
Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).
pubmed: 24663091 pmcid: 4407144 doi: 10.1038/nrcardio.2014.28
Gajarsa, J. J. & Kloner, R. A. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail. Rev. 16, 13–21 (2011).
pubmed: 20623185 doi: 10.1007/s10741-010-9181-7
Rumberger, J. A. Ventricular dilatation and remodeling after myocardial infarction. Mayo Clin. Proc. 69, 664–674 (1994).
pubmed: 8015331 doi: 10.1016/S0025-6196(12)61345-7
Sutton, M. G. S. J. & Sharpe, N. Left ventricular remodeling after myocardial infarction. Circulation 101, 2981–2988 (2000).
pubmed: 10869273 doi: 10.1161/01.CIR.101.25.2981
Kali, A. et al. Persistent microvascular obstruction after myocardial infarction culminates in the confluence of ferric iron oxide crystals, proinflammatory burden, and adverse remodeling. Circ. Cardiovasc. Imaging 9, e004996 (2016).
pubmed: 27903536 pmcid: 5703213 doi: 10.1161/CIRCIMAGING.115.004996
Mayr, A. et al. Evolution of myocardial tissue Injury. J. Am. Coll. Cardiol. Imaging. 15, 1030–1042 (2022).
Wang, Q. et al. Iron together with lipid downregulates protein levels of ceruloplasmin in macrophages associated with rapid foam cell formation. J. Atheroscler. Thromb. 23, 1201–1211 (2016).
pubmed: 27040361 pmcid: 5098920 doi: 10.5551/jat.32292
Ramakrishna, G., Rooke, T. W. & Cooper, L. T. Iron and peripheral arterial disease: revisiting the iron hypothesis in a different light. Vasc. Med. 8, 203–210 (2003).
pubmed: 14989563 doi: 10.1191/1358863x03vm493ra
Goldfarb, J. W., Roth, M. & Han, J. Myocardial fat deposition after left ventricular myocardial infarction: assessment by using MR water–fat separation imaging. Radiology 253, 65–73 (2009).
pubmed: 19703860 doi: 10.1148/radiol.2532082290
Cheniti, G. et al. Post-myocardial infarction scar with fat deposition shows specific electrophysiological properties and worse outcome after ventricular tachycardia ablation. J. Am. Heart Assoc. 8, e012482 (2019).
pubmed: 31378121 pmcid: 6761638 doi: 10.1161/JAHA.119.012482
Su, L., Siegel, J. E. & Fishbein, M. C. Adipose tissue in myocardial infarction. Cardiovasc. Pathol. 13, 98–102 (2004).
pubmed: 15033159 doi: 10.1016/S1054-8807(03)00134-0
Goldfarb, J. W., Arnold, S. & Han, J. Recent myocardial infarction: assessment with unenhanced T1-weighted MR imaging. Radiology 245, 245–250 (2007).
pubmed: 17885192 doi: 10.1148/radiol.2451061590
Mordi, I. et al. Prevalence and prognostic significance of lipomatous metaplasia in patients with prior myocardial infarction. JACC Cardiovasc. Imaging 8, 1111–1112 (2015).
pubmed: 25457764 doi: 10.1016/j.jcmg.2014.07.024
Kali, A. et al. Chronic manifestation of postreperfusion intramyocardial hemorrhage as regional iron deposition. Circulation: Cardiovasc. Imaging 6, 218–228 (2013).
Yu, H. et al. Multiecho water–fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn. Reson. Med. 60, 1122–1134 (2008).
pubmed: 18956464 pmcid: 3070175 doi: 10.1002/mrm.21737
Chan, W. et al. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ. Cardiovasc. Interv. 5, 270–278 (2012).
pubmed: 22496085 doi: 10.1161/CIRCINTERVENTIONS.111.966226
Behrouzi, B. et al. Action of iron chelator on intramyocardial hemorrhage and cardiac remodeling following acute myocardial infarction. Basic Res. Cardiol. 115, 24 (2020).
pubmed: 32140789 doi: 10.1007/s00395-020-0782-6
Hoffbrand, A. V., Cohen, A. & Hershko, C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood 102, 17–24 (2003).
pubmed: 12637334 doi: 10.1182/blood-2002-06-1867
Hung, C. L. et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J. Am. Coll. Cardiol. 56, 1812–1822 (2010).
pubmed: 21087709 doi: 10.1016/j.jacc.2010.06.044
Ganame, J. et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur. Heart J. 30, 1440–1449 (2009).
pubmed: 19346229 doi: 10.1093/eurheartj/ehp093
Mather, A. N., Fairbairn, T. A., Ball, S. G., Greenwood, J. P. & Plein, S. Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late arrhythmic risk. Heart 97, 453–459 (2011).
pubmed: 21051455 doi: 10.1136/hrt.2010.202028
Yuan, X. M., Brunk, U. T. & Olsson, A. G. Effects of iron- and hemoglobin-loaded human monocyte-derived macrophages on oxidation and uptake of LDL. Arterioscler. Thromb. Vasc. Biol. 15, 1345–1351 (1995).
pubmed: 7670948 doi: 10.1161/01.ATV.15.9.1345
Yuan, X. M. & Brunk, U. T. Iron and LDL-oxidation in atherogenesis. Apmis 106, 825–842 (1998).
pubmed: 9808409 doi: 10.1111/j.1699-0463.1998.tb00229.x
Kurz, T., Terman, A., Gustafsson, B. & Brunk, U. T. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 129, 389–406 (2008).
pubmed: 18259769 pmcid: 2668650 doi: 10.1007/s00418-008-0394-y
Hegyi, L., Skepper, J. N., Cary, N. R. B. & Mitchinson, M. J. Foam cell apoptosis and the development of the lipid core of human atherosclerosis. J. Patholol. 180, 423–429 (1996).
doi: 10.1002/(SICI)1096-9896(199612)180:4<423::AID-PATH677>3.0.CO;2-1
Sindrilaru, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997 (2011).
pubmed: 21317534 pmcid: 3049372 doi: 10.1172/JCI44490
Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Investig. 119, 136–145 (2009).
pubmed: 19065049
Pouliopoulos, J. et al. Intramyocardial adiposity after myocardial infarction: new implications of a substrate for ventricular tachycardia. Circulation 128, 2296–2308 (2013).
pubmed: 24036606 doi: 10.1161/CIRCULATIONAHA.113.002238
Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).
pubmed: 24492615 pmcid: 3953299 doi: 10.1074/jbc.M113.522037
Johnson, A. R., Freemerman, A. J., Abel, E. D., Rathmell, J. & Makowski, L. Glucose metabolism is linked to the inflammatory status of macrophages. BMC Proc. 6, P62 (2012).
pmcid: 3374262 doi: 10.1186/1753-6561-6-S3-P62
Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).
pubmed: 25086775 pmcid: 4139419 doi: 10.1038/ni.2956
Vats, D. et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).
pubmed: 16814729 pmcid: 1904486 doi: 10.1016/j.cmet.2006.05.011
Wernersson, S. & Pejler, G. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. 14, 478–494 (2014).
pubmed: 24903914 doi: 10.1038/nri3690
Lee, M., Lindstedt, L. K. & Kovanen, P. T. Mast cell-mediated inhibition of reverse cholesterol transport. Arterioscler. Thromb. 12, 1329–1335 (1992).
pubmed: 1420092 doi: 10.1161/01.ATV.12.11.1329
Jeziorska, M., McCollum, C. & Woolley, D. E. Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J. Pathol. 182, 115–122 (1997).
pubmed: 9227350 doi: 10.1002/(SICI)1096-9896(199705)182:1<115::AID-PATH806>3.0.CO;2-9
Judström, I. et al. Mast cell-dependent proteolytic modification of HDL particles during anaphylactic shock in the mouse reduces their ability to induce cholesterol efflux from macrophage foam cells ex vivo. Atherosclerosis 208, 148–154 (2010).
pubmed: 19679305 doi: 10.1016/j.atherosclerosis.2009.07.027
Hausenloy, D. J. & Yellon, D. M. Time to take myocardial reperfusion injury seriously. N. Engl. J. Med. 359, 518–520 (2008).
pubmed: 18669431 doi: 10.1056/NEJMe0803746
Kali, A., Tang, R. L. Q., Kumar, A., Min, J. K. & Dharmakumar, R. Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2*. Radiology 269, 387–395 (2013).
pubmed: 23847253 pmcid: 3807083 doi: 10.1148/radiol.13122397
Jolly, M. P. et al. Automated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy. J. Cardiovasc. Magn. Reson. 19, 59 (2017).
pubmed: 28768517 pmcid: 5541737 doi: 10.1186/s12968-017-0373-3

Auteurs

Ivan Cokic (I)

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Shing Fai Chan (SF)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA.

Xingmin Guan (X)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA.

Anand R Nair (AR)

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Hsin-Jung Yang (HJ)

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Ting Liu (T)

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Yinyin Chen (Y)

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Diego Hernando (D)

University of Wisconsin, Madison, WI, USA.

Jane Sykes (J)

Lawson Health Research Institute, University of Western Ontario, London, ON, Canada.

Richard Tang (R)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA.

John Butler (J)

Lawson Health Research Institute, University of Western Ontario, London, ON, Canada.

Alice Dohnalkova (A)

Pacific Northwest National Laboratory, Richland, WA, USA.

Libor Kovarik (L)

Pacific Northwest National Laboratory, Richland, WA, USA.

Robert Finney (R)

Cardio-Theranostics, Los Angeles, CA, USA.

Avinash Kali (A)

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Behzad Sharif (B)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA.

Louis S Bouchard (LS)

University of California, Los Angeles, CA, USA.

Rajesh Gupta (R)

University of Toledo, Toledo, OH, USA.

Mayil Singaram Krishnam (MS)

Stanford University, Palo Alto, CA, USA.

Keyur Vora (K)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA.

Balaji Tamarappoo (B)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA.

Andrew G Howarth (AG)

University of Calgary, Calgary, AB, Canada.

Andreas Kumar (A)

Northern Ontario School of Medicine, Sudbury, ON, Canada.

Joseph Francis (J)

Louisiana State University, Baton Rouge, LA, USA.

Scott B Reeder (SB)

University of Wisconsin, Madison, WI, USA.

John C Wood (JC)

University of Southern California, Los Angeles, CA, USA.

Frank S Prato (FS)

Lawson Health Research Institute, University of Western Ontario, London, ON, Canada.

Rohan Dharmakumar (R)

Krannert Cardiovascular Research Center, Indiana University School of Medicine/IU Health Cardiovascular Institute, Indianapolis, IN, USA. rdkumar@iu.edu.

Articles similaires

Humans Male Female Anemia Myocardial Infarction
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH