Cardiopulmonary work up of patients with and without fatigue 6 months after COVID-19.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 10 2022
Historique:
received: 24 01 2022
accepted: 20 10 2022
entrez: 27 10 2022
pubmed: 28 10 2022
medline: 1 11 2022
Statut: epublish

Résumé

The pathogenesis of long-Covid symptoms remains incompletely understood. Therefore, we aimed to determine cardiopulmonary limitations 6 months after surviving COVID-19 using pulmonary function tests, echocardiographic studies to the point of analysis of global-longitudinal-strain (GLS), which describes the cycling myocardium deformation and provides better data on left ventricular (LV) dysfunction than LV ejection fraction (LVEF), and validated questionnaires. Overall, 60 consecutive hospitalized patients were included (61 ± 2 years, 40% treated in the ICU). At follow-up (194 ± 3 days after discharge), fatigue was the most prevalent symptom (28%). Patients with fatigue were more symptomatic overall and characterized by worse quality of life (QoL) scores compared to patients without fatigue (all p < 0.05), mainly due to limited mobility and high symptom burden. While PFT variables and LVEF were normal in the vast majority of patients (LVEF = 52% (45-52%)), GLS was significantly reduced (- 15% (- 18 to - 14%)). However, GLS values were not different between patients with and without fatigue. In conclusion, fatigue was the most prevalent long-Covid symptom in our cohort, which was associated with worse QoL mainly due to limited mobility and the high burden of concomitant symptoms. Patients showed a subtle myocardial dysfunction 6 months after surviving COVID-19, but this did not relate to the presence of fatigue.

Identifiants

pubmed: 36302947
doi: 10.1038/s41598-022-22876-9
pii: 10.1038/s41598-022-22876-9
pmc: PMC9607837
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

18038

Informations de copyright

© 2022. The Author(s).

Références

Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. & Husain, L. Management of post-acute covid-19 in primary care. BMJ 370, m3026 (2020).
pubmed: 32784198 doi: 10.1136/bmj.m3026
Post-COVID Conditions: Information for Healthcare Providers. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html . Accessed 16 June 2022.
Soriano, J. B., Murthy, S., Marshall, J. C., Relan, P. & Diaz, J. V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 22, e102–e107 (2022).
pubmed: 34951953 doi: 10.1016/S1473-3099(21)00703-9
Mikkelsen, M.E. & Abramoff, B. COVID-19: Evaluation and management of adults following acute viral illness. in UpToDate (2021).
Herrera, J. E. et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients. PM R 13, 1027–1043 (2021).
pubmed: 34346558 pmcid: 8441628 doi: 10.1002/pmrj.12684
Morin, L. et al. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA 325, 1525–1534 (2021).
pubmed: 33729425 pmcid: 7970386 doi: 10.1001/jama.2021.3331
Potter, E. & Marwick, T. H. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11, 260–274 (2018).
pubmed: 29413646 doi: 10.1016/j.jcmg.2017.11.017
Xie, Y. et al. Biventricular longitudinal strain predict mortality in COVID-19 patients. Front Cardiovasc Med 7, 632434 (2020).
pubmed: 33537350 doi: 10.3389/fcvm.2020.632434
Li, R. et al. Widespread myocardial dysfunction in COVID-19 patients detected by myocardial strain imaging using 2-D speckle-tracking echocardiography. Acta Pharmacol Sin 42, 1567–1574 (2021).
pubmed: 33510459 pmcid: 7842392 doi: 10.1038/s41401-020-00595-z
Janus, S. E. et al. Prognostic value of left ventricular global longitudinal strain in COVID-19. Am J Cardiol 131, 134–136 (2020).
pubmed: 32732008 pmcid: 7332458 doi: 10.1016/j.amjcard.2020.06.053
Stöbe, S. et al. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin Res Cardiol 109, 1549–1566 (2020).
pubmed: 32803387 pmcid: 7428201 doi: 10.1007/s00392-020-01727-5
Baycan, O. F. et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int J Cardiovasc Imaging 37, 135–144 (2021).
pubmed: 32803484 doi: 10.1007/s10554-020-01968-5
Mahajan, S. et al. Left ventricular global longitudinal strain in COVID-19 recovered patients. Echocardiography 38, 1722–1730 (2021).
pubmed: 34555203 pmcid: 8653213 doi: 10.1111/echo.15199
Özer, S., Candan, L., Özyıldız, A. G. & Turan, O. E. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int. J. Cardiovasc. Imaging 37, 2227–2233 (2021).
pubmed: 33725265 pmcid: 7961169 doi: 10.1007/s10554-021-02211-5
Ahmed, H. et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 52, jrm00063 (2020).
pubmed: 32449782
Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1-39.e14 (2015).
pubmed: 25559473 doi: 10.1016/j.echo.2014.10.003
Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).
pubmed: 11556941 pmcid: 1495268 doi: 10.1046/j.1525-1497.2001.016009606.x
Kroenke, K., Spitzer, R. L., Williams, J. B. & Löwe, B. The patient health questionnaire somatic, anxiety, and depressive symptom scales: A systematic review. Gen. Hosp. Psychiatry 32, 345–359 (2010).
pubmed: 20633738 doi: 10.1016/j.genhosppsych.2010.03.006
Jones, P. W., Quirk, F. H. & Baveystock, C. M. The St George’s Respiratory Questionnaire. Respir. Med. 85 Suppl B, 25–31 (1991) (discussion 33-27).
pubmed: 1759018 doi: 10.1016/S0954-6111(06)80166-6
Jones, P. W., Quirk, F. H., Baveystock, C. M. & Littlejohns, P. A self-complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 145, 1321–1327 (1992).
pubmed: 1595997 doi: 10.1164/ajrccm/145.6.1321
Brooks, R. EuroQol: The current state of play. Health Policy 37, 53–72 (1996).
pubmed: 10158943 doi: 10.1016/0168-8510(96)00822-6
Wanger, J. et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 26, 511–522 (2005).
pubmed: 16135736 doi: 10.1183/09031936.05.00035005
Miller, M. R. et al. Standardisation of spirometry. Eur. Respir. J. 26, 319–338 (2005).
pubmed: 16055882 doi: 10.1183/09031936.05.00034805
Matthys, H. & Sorichter, S. Lungenfunktionsuntersuchungen. In Klinische Pneumologie Vol. 2 (eds Matthys, H. & Seeger, W.) 56–78 (Springer, 2008).
doi: 10.1007/978-3-540-37692-7
Chetta, A. et al. Reference values for the 6-min walk test in healthy subjects 20–50 years old. Respir. Med. 100, 1573–1578 (2006).
pubmed: 16466676 doi: 10.1016/j.rmed.2006.01.001
Casanova, C. et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur. Respir. J. 37, 150–156 (2011).
pubmed: 20525717 doi: 10.1183/09031936.00194909
Enright, P. L. & Sherrill, D. L. Reference equations for the six-minute walk in healthy adults. Am. J. Respir. Crit. Care Med. 158, 1384–1387 (1998).
pubmed: 9817683 doi: 10.1164/ajrccm.158.5.9710086
Michelen, M. et al. Characterising long COVID: a living systematic review. BMJ Glob. Health 6, e005427 (2021).
pubmed: 34580069 doi: 10.1136/bmjgh-2021-005427
Logue, J. K. et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw. Open 4, e210830 (2021).
pubmed: 33606031 pmcid: 7896197 doi: 10.1001/jamanetworkopen.2021.0830
Daher, A. et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 174, 106197 (2020).
pubmed: 33120193 pmcid: 7573668 doi: 10.1016/j.rmed.2020.106197
Daher, A. et al. Six months follow-up of patients with invasive mechanical ventilation due to COVID-19 related ARDS. Int. J. Environ. Res. Public Health 18, 5861 (2021).
pubmed: 34072557 pmcid: 8199360 doi: 10.3390/ijerph18115861
Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232 (2021).
pubmed: 33428867 pmcid: 7833295 doi: 10.1016/S0140-6736(20)32656-8
Gaebler, C., et al. Evolution of antibody immunity to SARS-CoV-2. bioRxiv (2021).
Brito, D. et al. High prevalence of pericardial involvement in college student athletes recovering from COVID-19. JACC Cardiovasc. Imaging 14, 541–555 (2021).
pubmed: 33223496 doi: 10.1016/j.jcmg.2020.10.023
Rajpal, S. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering From COVID-19 infection. JAMA Cardiol. 6, 116–118 (2021).
pubmed: 32915194
Huang, L. et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc. Imaging 13, 2330–2339 (2020).
pubmed: 32763118 pmcid: 7214335 doi: 10.1016/j.jcmg.2020.05.004
Wu, X. et al. Cardiac involvement in recovered patients from COVID-19: A preliminary 6-month follow-up study. Front. Cardiovasc. Med 8, 654405 (2021).
pubmed: 34055936 pmcid: 8155269 doi: 10.3389/fcvm.2021.654405
COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. https://www.covid19treatmentguidelines.nih.gov/ . Accessed 16 June 2022.
Caiado, L. D. C., Azevedo, N. C., Azevedo, R. R. C. & Caiado, B. R. Cardiac involvement in patients recovered from COVID-19 identified using left ventricular longitudinal strain. J. Echocardiogr. 20, 51–56 (2022).
pubmed: 34648149 doi: 10.1007/s12574-021-00555-4
Kraft, L., Erdenesukh, T., Sauter, M., Tschöpe, C. & Klingel, K. Blocking the IL-1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res. Cardiol. 114, 11 (2019).
pubmed: 30673858 doi: 10.1007/s00395-019-0719-0
Sirico, D. et al. Evolution of echocardiographic and cardiac magnetic resonance imaging abnormalities during follow-up in patients with multisystem inflammatory syndrome in children. Eur. Heart J. Cardiovasc. Imaging 23, 1066–1074 (2022).
pubmed: 35639926 doi: 10.1093/ehjci/jeac096
Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B. & Wu, J. C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17, 543–558 (2020).
pubmed: 32690910 pmcid: 7370876 doi: 10.1038/s41569-020-0413-9
Rodriguez-Gonzalez, M., Castellano-Martinez, A., Cascales-Poyatos, H. M. & Perez-Reviriego, A. A. Cardiovascular impact of COVID-19 with a focus on children: A systematic review. World J. Clin. Cases 8, 5250–5283 (2020).
pubmed: 33269260 pmcid: 7674714 doi: 10.12998/wjcc.v8.i21.5250
Nicol, M. et al. Delayed acute myocarditis and COVID-19-related multisystem inflammatory syndrome. ESC Heart Fail. 7, 4371–4376 (2020).
pmcid: 7755006 doi: 10.1002/ehf2.13047
Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5, 1265–1273 (2020).
pubmed: 32730619 pmcid: 7385689 doi: 10.1001/jamacardio.2020.3557
Spiesshoefer, J. et al. Diaphragm dysfunction as a potential determinant of dyspnea on exertion in patients one year after COVID-19-related ARDS. Respir. Res. 23, 187 (2022).
pubmed: 35841032 pmcid: 9284093 doi: 10.1186/s12931-022-02100-y
Clavario, P. et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 340, 113–118 (2021).
pubmed: 34311011 pmcid: 8302817 doi: 10.1016/j.ijcard.2021.07.033

Auteurs

Kirsten Thiele (K)

Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Paul Balfanz (P)

Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Tobias Müller (T)

Department of Pneumology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Bojan Hartmann (B)

Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Jens Spiesshoefer (J)

Department of Pneumology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Julian Grebe (J)

Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Dirk Müller-Wieland (D)

Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Nikolaus Marx (N)

Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Michael Dreher (M)

Department of Pneumology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany.

Ayham Daher (A)

Department of Pneumology and Intensive Care Medicine, University Hospital RWTH, 52074, Aachen, Germany. adaher@ukaachen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH