Cardiopulmonary work up of patients with and without fatigue 6 months after COVID-19.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 10 2022
27 10 2022
Historique:
received:
24
01
2022
accepted:
20
10
2022
entrez:
27
10
2022
pubmed:
28
10
2022
medline:
1
11
2022
Statut:
epublish
Résumé
The pathogenesis of long-Covid symptoms remains incompletely understood. Therefore, we aimed to determine cardiopulmonary limitations 6 months after surviving COVID-19 using pulmonary function tests, echocardiographic studies to the point of analysis of global-longitudinal-strain (GLS), which describes the cycling myocardium deformation and provides better data on left ventricular (LV) dysfunction than LV ejection fraction (LVEF), and validated questionnaires. Overall, 60 consecutive hospitalized patients were included (61 ± 2 years, 40% treated in the ICU). At follow-up (194 ± 3 days after discharge), fatigue was the most prevalent symptom (28%). Patients with fatigue were more symptomatic overall and characterized by worse quality of life (QoL) scores compared to patients without fatigue (all p < 0.05), mainly due to limited mobility and high symptom burden. While PFT variables and LVEF were normal in the vast majority of patients (LVEF = 52% (45-52%)), GLS was significantly reduced (- 15% (- 18 to - 14%)). However, GLS values were not different between patients with and without fatigue. In conclusion, fatigue was the most prevalent long-Covid symptom in our cohort, which was associated with worse QoL mainly due to limited mobility and the high burden of concomitant symptoms. Patients showed a subtle myocardial dysfunction 6 months after surviving COVID-19, but this did not relate to the presence of fatigue.
Identifiants
pubmed: 36302947
doi: 10.1038/s41598-022-22876-9
pii: 10.1038/s41598-022-22876-9
pmc: PMC9607837
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18038Informations de copyright
© 2022. The Author(s).
Références
Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. & Husain, L. Management of post-acute covid-19 in primary care. BMJ 370, m3026 (2020).
pubmed: 32784198
doi: 10.1136/bmj.m3026
Post-COVID Conditions: Information for Healthcare Providers. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html . Accessed 16 June 2022.
Soriano, J. B., Murthy, S., Marshall, J. C., Relan, P. & Diaz, J. V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 22, e102–e107 (2022).
pubmed: 34951953
doi: 10.1016/S1473-3099(21)00703-9
Mikkelsen, M.E. & Abramoff, B. COVID-19: Evaluation and management of adults following acute viral illness. in UpToDate (2021).
Herrera, J. E. et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients. PM R 13, 1027–1043 (2021).
pubmed: 34346558
pmcid: 8441628
doi: 10.1002/pmrj.12684
Morin, L. et al. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA 325, 1525–1534 (2021).
pubmed: 33729425
pmcid: 7970386
doi: 10.1001/jama.2021.3331
Potter, E. & Marwick, T. H. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11, 260–274 (2018).
pubmed: 29413646
doi: 10.1016/j.jcmg.2017.11.017
Xie, Y. et al. Biventricular longitudinal strain predict mortality in COVID-19 patients. Front Cardiovasc Med 7, 632434 (2020).
pubmed: 33537350
doi: 10.3389/fcvm.2020.632434
Li, R. et al. Widespread myocardial dysfunction in COVID-19 patients detected by myocardial strain imaging using 2-D speckle-tracking echocardiography. Acta Pharmacol Sin 42, 1567–1574 (2021).
pubmed: 33510459
pmcid: 7842392
doi: 10.1038/s41401-020-00595-z
Janus, S. E. et al. Prognostic value of left ventricular global longitudinal strain in COVID-19. Am J Cardiol 131, 134–136 (2020).
pubmed: 32732008
pmcid: 7332458
doi: 10.1016/j.amjcard.2020.06.053
Stöbe, S. et al. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin Res Cardiol 109, 1549–1566 (2020).
pubmed: 32803387
pmcid: 7428201
doi: 10.1007/s00392-020-01727-5
Baycan, O. F. et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int J Cardiovasc Imaging 37, 135–144 (2021).
pubmed: 32803484
doi: 10.1007/s10554-020-01968-5
Mahajan, S. et al. Left ventricular global longitudinal strain in COVID-19 recovered patients. Echocardiography 38, 1722–1730 (2021).
pubmed: 34555203
pmcid: 8653213
doi: 10.1111/echo.15199
Özer, S., Candan, L., Özyıldız, A. G. & Turan, O. E. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int. J. Cardiovasc. Imaging 37, 2227–2233 (2021).
pubmed: 33725265
pmcid: 7961169
doi: 10.1007/s10554-021-02211-5
Ahmed, H. et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 52, jrm00063 (2020).
pubmed: 32449782
Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1-39.e14 (2015).
pubmed: 25559473
doi: 10.1016/j.echo.2014.10.003
Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).
pubmed: 11556941
pmcid: 1495268
doi: 10.1046/j.1525-1497.2001.016009606.x
Kroenke, K., Spitzer, R. L., Williams, J. B. & Löwe, B. The patient health questionnaire somatic, anxiety, and depressive symptom scales: A systematic review. Gen. Hosp. Psychiatry 32, 345–359 (2010).
pubmed: 20633738
doi: 10.1016/j.genhosppsych.2010.03.006
Jones, P. W., Quirk, F. H. & Baveystock, C. M. The St George’s Respiratory Questionnaire. Respir. Med. 85 Suppl B, 25–31 (1991) (discussion 33-27).
pubmed: 1759018
doi: 10.1016/S0954-6111(06)80166-6
Jones, P. W., Quirk, F. H., Baveystock, C. M. & Littlejohns, P. A self-complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 145, 1321–1327 (1992).
pubmed: 1595997
doi: 10.1164/ajrccm/145.6.1321
Brooks, R. EuroQol: The current state of play. Health Policy 37, 53–72 (1996).
pubmed: 10158943
doi: 10.1016/0168-8510(96)00822-6
Wanger, J. et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 26, 511–522 (2005).
pubmed: 16135736
doi: 10.1183/09031936.05.00035005
Miller, M. R. et al. Standardisation of spirometry. Eur. Respir. J. 26, 319–338 (2005).
pubmed: 16055882
doi: 10.1183/09031936.05.00034805
Matthys, H. & Sorichter, S. Lungenfunktionsuntersuchungen. In Klinische Pneumologie Vol. 2 (eds Matthys, H. & Seeger, W.) 56–78 (Springer, 2008).
doi: 10.1007/978-3-540-37692-7
Chetta, A. et al. Reference values for the 6-min walk test in healthy subjects 20–50 years old. Respir. Med. 100, 1573–1578 (2006).
pubmed: 16466676
doi: 10.1016/j.rmed.2006.01.001
Casanova, C. et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur. Respir. J. 37, 150–156 (2011).
pubmed: 20525717
doi: 10.1183/09031936.00194909
Enright, P. L. & Sherrill, D. L. Reference equations for the six-minute walk in healthy adults. Am. J. Respir. Crit. Care Med. 158, 1384–1387 (1998).
pubmed: 9817683
doi: 10.1164/ajrccm.158.5.9710086
Michelen, M. et al. Characterising long COVID: a living systematic review. BMJ Glob. Health 6, e005427 (2021).
pubmed: 34580069
doi: 10.1136/bmjgh-2021-005427
Logue, J. K. et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw. Open 4, e210830 (2021).
pubmed: 33606031
pmcid: 7896197
doi: 10.1001/jamanetworkopen.2021.0830
Daher, A. et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 174, 106197 (2020).
pubmed: 33120193
pmcid: 7573668
doi: 10.1016/j.rmed.2020.106197
Daher, A. et al. Six months follow-up of patients with invasive mechanical ventilation due to COVID-19 related ARDS. Int. J. Environ. Res. Public Health 18, 5861 (2021).
pubmed: 34072557
pmcid: 8199360
doi: 10.3390/ijerph18115861
Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232 (2021).
pubmed: 33428867
pmcid: 7833295
doi: 10.1016/S0140-6736(20)32656-8
Gaebler, C., et al. Evolution of antibody immunity to SARS-CoV-2. bioRxiv (2021).
Brito, D. et al. High prevalence of pericardial involvement in college student athletes recovering from COVID-19. JACC Cardiovasc. Imaging 14, 541–555 (2021).
pubmed: 33223496
doi: 10.1016/j.jcmg.2020.10.023
Rajpal, S. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering From COVID-19 infection. JAMA Cardiol. 6, 116–118 (2021).
pubmed: 32915194
Huang, L. et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc. Imaging 13, 2330–2339 (2020).
pubmed: 32763118
pmcid: 7214335
doi: 10.1016/j.jcmg.2020.05.004
Wu, X. et al. Cardiac involvement in recovered patients from COVID-19: A preliminary 6-month follow-up study. Front. Cardiovasc. Med 8, 654405 (2021).
pubmed: 34055936
pmcid: 8155269
doi: 10.3389/fcvm.2021.654405
COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. https://www.covid19treatmentguidelines.nih.gov/ . Accessed 16 June 2022.
Caiado, L. D. C., Azevedo, N. C., Azevedo, R. R. C. & Caiado, B. R. Cardiac involvement in patients recovered from COVID-19 identified using left ventricular longitudinal strain. J. Echocardiogr. 20, 51–56 (2022).
pubmed: 34648149
doi: 10.1007/s12574-021-00555-4
Kraft, L., Erdenesukh, T., Sauter, M., Tschöpe, C. & Klingel, K. Blocking the IL-1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res. Cardiol. 114, 11 (2019).
pubmed: 30673858
doi: 10.1007/s00395-019-0719-0
Sirico, D. et al. Evolution of echocardiographic and cardiac magnetic resonance imaging abnormalities during follow-up in patients with multisystem inflammatory syndrome in children. Eur. Heart J. Cardiovasc. Imaging 23, 1066–1074 (2022).
pubmed: 35639926
doi: 10.1093/ehjci/jeac096
Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B. & Wu, J. C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17, 543–558 (2020).
pubmed: 32690910
pmcid: 7370876
doi: 10.1038/s41569-020-0413-9
Rodriguez-Gonzalez, M., Castellano-Martinez, A., Cascales-Poyatos, H. M. & Perez-Reviriego, A. A. Cardiovascular impact of COVID-19 with a focus on children: A systematic review. World J. Clin. Cases 8, 5250–5283 (2020).
pubmed: 33269260
pmcid: 7674714
doi: 10.12998/wjcc.v8.i21.5250
Nicol, M. et al. Delayed acute myocarditis and COVID-19-related multisystem inflammatory syndrome. ESC Heart Fail. 7, 4371–4376 (2020).
pmcid: 7755006
doi: 10.1002/ehf2.13047
Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5, 1265–1273 (2020).
pubmed: 32730619
pmcid: 7385689
doi: 10.1001/jamacardio.2020.3557
Spiesshoefer, J. et al. Diaphragm dysfunction as a potential determinant of dyspnea on exertion in patients one year after COVID-19-related ARDS. Respir. Res. 23, 187 (2022).
pubmed: 35841032
pmcid: 9284093
doi: 10.1186/s12931-022-02100-y
Clavario, P. et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 340, 113–118 (2021).
pubmed: 34311011
pmcid: 8302817
doi: 10.1016/j.ijcard.2021.07.033