Metabolomics of Respiratory Diseases.

Acute lung injury Acute respiratory distress syndrome (ARDS) Asthma Chronic obstructive pulmonary disease (COPD) Pneumonia

Journal

Handbook of experimental pharmacology
ISSN: 0171-2004
Titre abrégé: Handb Exp Pharmacol
Pays: Germany
ID NLM: 7902231

Informations de publication

Date de publication:
2023
Historique:
pubmed: 29 10 2022
medline: 8 3 2023
entrez: 28 10 2022
Statut: ppublish

Résumé

Metabolomics is an expanding field of systems biology that is gaining significant attention in respiratory research. As a unique approach to understanding and diagnosing diseases, metabolomics provides a snapshot of all metabolites present in biological samples such as exhaled breath condensate, bronchoalveolar lavage, plasma, serum, urine, and other specimens that may be obtained from patients with respiratory diseases. In this article, we review the rapidly expanding field of metabolomics in its application to respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and acute lung injury, along with its more severe form, adult respiratory disease syndrome. We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized occupational and environmental materials. With the latest advances in our understanding of the microbiome, we discuss microbiome-derived metabolites that arise from the gut and lung in asthma and COPD that have mechanistic implications for these diseases. Recent literature has suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe diseases which may be fatal for many patients each year.

Identifiants

pubmed: 36306009
doi: 10.1007/164_2022_614
doi:

Substances chimiques

Biomarkers 0

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

339-365

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2(7511):319–323
pubmed: 4143721 doi: 10.1016/S0140-6736(67)90168-7
Barcik W, Boutin RCT, Sokolowska M, Finlay BB (2020) The role of lung and gut microbiota in the pathology of asthma. Immunity 52(2):241–255
pubmed: 32075727 pmcid: 7128389 doi: 10.1016/j.immuni.2020.01.007
Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL, Huffnagle GB (2015) Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6(2):e00037
pubmed: 25736890 pmcid: 4358017 doi: 10.1128/mBio.00037-15
Bian X, Sun B, Zheng P, Li N, Wu JL (2017) Derivatization enhanced separation and sensitivity of long chain-free fatty acids: application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal Chim Acta 989:59–70
pubmed: 28915943 doi: 10.1016/j.aca.2017.08.009
Bos LDJ (2018) Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. Ann Transl Med 6(2):33
pubmed: 29430450 pmcid: 5799150 doi: 10.21037/atm.2018.01.17
Bos LD, Weda H, Wang Y, Knobel HH, Nijsen TM, Vink TJ, Zwinderman AH, Sterk PJ, Schultz MJ (2014) Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur Respir J 44(1):188–197
pubmed: 24743964 doi: 10.1183/09031936.00005614
Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, Yang IA et al (2020) Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun 11(1):5886
pubmed: 33208745 pmcid: 7676259 doi: 10.1038/s41467-020-19701-0
Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM (2017) Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 15(1):55–63
pubmed: 27694885 doi: 10.1038/nrmicro.2016.142
Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, Reynolds LA, Hacker L, Mohr J, Finlay BB, Zaph C et al (2018) Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11(3):785–795
pubmed: 29067994 doi: 10.1038/mi.2017.75
Chambers ES, Preston T, Frost G, Morrison DJ (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 7(4):198–206
pubmed: 30264354 pmcid: 6244749 doi: 10.1007/s13668-018-0248-8
Chang-Chien J, Huang HY, Tsai HJ, Lo CJ, Lin WC, Tseng YL, Wang SL, Ho HY, Cheng ML, Yao TC (2021) Metabolomic differences of exhaled breath condensate among children with and without asthma. Pediatr Allergy Immunol 32(2):264–272
pubmed: 32920883 doi: 10.1111/pai.13368
Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184(8):957–963
pubmed: 21680950 pmcid: 3208663 doi: 10.1164/rccm.201104-0655OC
Checkley W, Deza MP, Klawitter J, Romero KM, Klawitter J, Pollard SL, Wise RA, Christians U, Hansel NN (2016) Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir Med 121(1532–3064 (Electronic)):59–66
pubmed: 27888993 pmcid: 5516646 doi: 10.1016/j.rmed.2016.10.011
Chen H, Li Z, Dong L, Wu Y, Shen H, Chen Z (2019) Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 14:1009–1018
pubmed: 31190786 pmcid: 6524761 doi: 10.2147/COPD.S196210
Chiu CY, Lin G, Cheng ML, Chiang MH, Tsai MH, Su KW, Hua MC, Liao SL, Lai SH, Yao TC, Yeh KW et al (2018) Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood. Pediatr Allergy Immunol 29(5):496–503
pubmed: 29679407 doi: 10.1111/pai.12909
Chiu CY, Cheng ML, Chiang MH, Wang CJ, Tsai MH, Lin G (2020) Metabolomic analysis reveals distinct profiles in the plasma and urine associated with IgE reactions in childhood asthma. J Clin Med 9(3):887
pubmed: 32213896 pmcid: 7141511 doi: 10.3390/jcm9030887
Chiu CY, Cheng ML, Chiang MH, Wang CJ, Tsai MH, Lin G (2021) Integrated metabolic and microbial analysis reveals host–microbial interactions in IgE-mediated childhood asthma. Sci Rep 11(1):23407
pubmed: 34862469 pmcid: 8642522 doi: 10.1038/s41598-021-02925-5
Crowley G, Kwon S, Haider SH, Caraher EJ, Lam R, St-Jules DE, Liu M, Prezant DJ, Nolan A (2018) Metabolomics of world trade center-lung injury: a machine learning approach. BMJ Open Respir Res 5(1):e000274
pubmed: 30233801 pmcid: 6135464 doi: 10.1136/bmjresp-2017-000274
Cullinan P, Munoz X, Suojalehto H, Agius R, Jindal S, Sigsgaard T, Blomberg A, Charpin D, Annesi-Maesano I, Gulati M, Kim Y et al (2017) Occupational lung diseases: from old and novel exposures to effective preventive strategies. Lancet Respir Med 5(5):445–455
pubmed: 28089118 doi: 10.1016/S2213-2600(16)30424-6
Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J, Sperling AI, Solway J, Naureckas ET, Gilbert JA, White SR (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137(5):1398–1405
pubmed: 26627545 doi: 10.1016/j.jaci.2015.10.017
Devine JF (2008) Chronic obstructive pulmonary disease: an overview. Am Health Drug Benefits 1(7):34–42
pubmed: 25126252 pmcid: 4106574
Diao W, Labaki WW, Han MK, Yeomans L, Sun Y, Smiley Z, Kim JH, McHugh C, Xiang P, Shen N, Sun X et al (2019) Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 14:2015–2025
pubmed: 31564849 pmcid: 6732562 doi: 10.2147/COPD.S210598
Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annu Rev Physiol 78(1):481–504
pubmed: 26527186 doi: 10.1146/annurev-physiol-021115-105238
Durack J, Lynch SV, Nariya S, Bhakta NR, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, Mauger DT et al (2017) Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 140(1):63–75
pubmed: 27838347 doi: 10.1016/j.jaci.2016.08.055
Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ et al (2011) Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One 6(2):e16384
pubmed: 21364979 pmcid: 3043049 doi: 10.1371/journal.pone.0016384
Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF, Stringer KA (2014) Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res 13(2):640–649
pubmed: 24289193 doi: 10.1021/pr4007624
Ferraro VA, Carraro S, Pirillo P, Gucciardi A, Poloniato G, Stocchero M, Giordano G, Zanconato S, Baraldi E (2020) Breathomics in asthmatic children treated with inhaled corticosteroids. Meta 10(10):390
Gai X, Guo C, Zhang L, Zhang L, Abulikemu M, Wang J, Zhou Q, Chen Y, Sun Y, Chang C (2021) Serum glycerophospholipid profile in acute exacerbation of chronic obstructive pulmonary disease. Front Physiol 12:646010
pubmed: 33658945 pmcid: 7917046 doi: 10.3389/fphys.2021.646010
Gattinoni L, Cressoni M, Brazzi L (2014) Fluids in ARDS: from onset through recovery. Curr Opin Crit Care 20(4):373–377
pubmed: 24979554 doi: 10.1097/MCC.0000000000000105
Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K (2020) Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res 21(1):126
pubmed: 32448302 pmcid: 7245917 doi: 10.1186/s12931-020-01390-4
Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, Good JT Jr, Gelfand EW, Martin RJ, Leung DY (2013) The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 188(10):1193–1201
pubmed: 24024497 pmcid: 3863730 doi: 10.1164/rccm.201304-0775OC
Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, Fleuriet J, Salvator H, Naline E, Couderc LJ, Devillier P et al (2021) Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine 63:103154
pubmed: 33279860 doi: 10.1016/j.ebiom.2020.103154
Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG (2013) U.S. Hospitalizations for pneumonia after a decade of pneumococcal vaccination. N Engl J Med 369(2):155–163
pubmed: 23841730 pmcid: 4877190 doi: 10.1056/NEJMoa1209165
Halper-Stromberg E, Gillenwater L, Cruickshank-Quinn C, O'Neal WK, Reisdorph N, Petrache I, Zhuang Y, Labaki WW, Curtis JL, Wells J, Rennard S et al (2019) Bronchoalveolar lavage fluid from COPD patients reveals more compounds associated with disease than matched plasma. Metabolites 9(8):157
pubmed: 31349744 pmcid: 6724137 doi: 10.3390/metabo9080157
Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5(1):e8578
pubmed: 20052417 pmcid: 2798952 doi: 10.1371/journal.pone.0008578
Horvat RJ, Lane WG, Ng H, Shepherd AD (1964) Saturated hydrocarbons from autoxidizing methyl linoleate. Nature 203:523–524
pubmed: 14202378 doi: 10.1038/203523b0
Huang C, Shi G (2019) Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 17(1):225
pubmed: 31307469 pmcid: 6632217 doi: 10.1186/s12967-019-1971-7
Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H (2015) The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol 136(4):874–884
pubmed: 26220531 pmcid: 4600429 doi: 10.1016/j.jaci.2015.05.044
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Izquierdo-Garcia JL, Naz S, Nin N, Rojas Y, Erazo M, Martinez-Caro L, Garcia A, de Paula M, Fernandez-Segoviano P, Casals C, Esteban A et al (2014) A Metabolomic approach to the pathogenesis of ventilator-induced lung injury. Anesthesiology 120(3):694–702
pubmed: 24253045 doi: 10.1097/ALN.0000000000000074
Jiang T, Dai L, Li P, Zhao J, Wang X, An L, Liu M, Wu S, Wang Y, Peng Y, Sun D et al (2021) Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 1866(2):158853
pubmed: 33160078 doi: 10.1016/j.bbalip.2020.158853
Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D, Park S, Park CS, Park SW, Kwon SW (2014) Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res 13(9):3919–3929
pubmed: 25040188 doi: 10.1021/pr5002059
Kelly RS, Virkud Y, Giorgio R, Celedon JC, Weiss ST, Lasky-Su J (2017) Metabolomic profiling of lung function in Costa-Rican children with asthma. Biochim Biophys Acta Mol basis Dis 1863(6):1590–1595
pubmed: 28188833 doi: 10.1016/j.bbadis.2017.02.006
Keogh E, Mark WE (2021) Managing malnutrition in COPD: a review. Respir Med 176:106248
pubmed: 33253970 doi: 10.1016/j.rmed.2020.106248
Kilk K, Aug A, Ottas A, Soomets U, Altraja S, Altraja A (2018) Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics. Int J Mol Sci 19(3):666
pubmed: 29495451 pmcid: 5877527 doi: 10.3390/ijms19030666
Kwon S, Lee M, Crowley G, Schwartz T, Zeig-Owens R, Prezant DJ, Liu M, Nolan A (2021) Dynamic metabolic risk profiling of world trade center lung disease: a longitudinal cohort study. Am J Respir Crit Care Med 204(9):1035–1047
pubmed: 34473012 pmcid: 8663002 doi: 10.1164/rccm.202006-2617OC
Lacy P, McKay RT, Finkel M, Karnovsky A, Woehler S, Lewis MJ, Chang D, Stringer KA (2014) Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites. PLoS One 9(1):e85732
pubmed: 24465670 pmcid: 3897511 doi: 10.1371/journal.pone.0085732
Li G, Malinchoc M, Cartin-Ceba R, Venkata CV, Kor DJ, Peters SG, Hubmayr RD, Gajic O (2011) Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med 183(1):59–66
pubmed: 20693377 doi: 10.1164/rccm.201003-0436OC
Li S, Liu J, Zhou J, Wang Y, Jin F, Chen X, Yang J, Chen Z (2020) Urinary Metabolomic profiling reveals biological pathways and predictive signatures associated with childhood asthma. J Asthma Allergy 13:713–724
pubmed: 33376359 pmcid: 7755329 doi: 10.2147/JAA.S281198
Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, Cao W, Pan T, Zhou Y, Yang Z, Li J et al (2021) Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res 22(1):274
pubmed: 34696775 pmcid: 8543848 doi: 10.1186/s12931-021-01872-z
Liang Y, Gai XY, Chang C, Zhang X, Wang J, Li TT (2019) Metabolomic profiling differences among asthma, COPD, and healthy subjects: a LC-MS-based metabolomic analysis. Biomed Environ Sci 32(9):659–672
pubmed: 31635682
Loureiro CC, Oliveira AS, Santos M, Rudnitskaya A, Todo-Bom A, Bousquet J, Rocha SM (2016) Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy 71(9):1362–1365
pubmed: 27188766 doi: 10.1111/all.12935
Loverdos K, Bellos G, Kokolatou L, Vasileiadis I, Giamarellos E, Pecchiari M, Koulouris N, Koutsoukou A, Rovina N (2019) Lung microbiome in asthma: current perspectives. J Clin Med 8(11):1967
pubmed: 31739446 pmcid: 6912699 doi: 10.3390/jcm8111967
Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics – a review in human disease diagnosis. Anal Chim Acta 659(1–2):23–33
pubmed: 20103103 doi: 10.1016/j.aca.2009.11.042
Maniscalco M, Paris D, Melck DJ, D'Amato M, Zedda A, Sofia M, Stellato C, Motta A (2017) Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol 139(5):1536–1547
pubmed: 27746236 doi: 10.1016/j.jaci.2016.08.038
Maniscalco M, Paris D, Melck D, Chiariello N, Di Napoli F, Manno M, Iavicoli I, Motta A (2018) Biomonitoring of workers using nuclear magnetic resonance-based metabolomics of exhaled breath condensate: a pilot study. Toxicol Lett 298:4–12
pubmed: 30359766 doi: 10.1016/j.toxlet.2018.10.018
Marsland BJ, Trompette A, Gollwitzer ES (2015) The gut-lung axis in respiratory disease. Ann Am Thorac Soc 12(Suppl 2):S150–S156
pubmed: 26595731 doi: 10.1513/AnnalsATS.201503-133AW
Martin TR, Matute-Bello G (2011) Experimental models and emerging hypotheses for acute lung injury. Crit Care Clin 27(3):735–752
pubmed: 21742226 pmcid: 3159414 doi: 10.1016/j.ccc.2011.05.013
Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P, Riffault S, Remot A, Thomas M (2018) Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol 9(1168):1168
pubmed: 30246806 pmcid: 6110890 doi: 10.3389/fphys.2018.01168
Matute-Bello G, Downey GP (2013) Reply: defining lung injury in animals. Am J Respir Cell Mol Biol 48(2):267–268
pubmed: 23487848 pmcid: 7357621 doi: 10.1165/rcmb.2012-0074LE
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM (2011) Acute Lung Injury in Animals Study G. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–738
pubmed: 21531958 pmcid: 7328339 doi: 10.1165/rcmb.2009-0210ST
Matysiak J, Klupczynska A, Packi K, Mackowiak-Jakubowska A, Breborowicz A, Pawlicka O, Olejniczak K, Kokot ZJ, Matysiak J (2020) Alterations in serum-free amino acid profiles in childhood asthma. Int J Environ Res Public Health 17(13):4758
pubmed: 32630672 pmcid: 7370195 doi: 10.3390/ijerph17134758
Meyer NJ (2013) Future clinical applications of genomics for acute respiratory distress syndrome. Lancet Respir Med 1(10):793–803
pubmed: 24461759 doi: 10.1016/S2213-2600(13)70134-6
Meyer NJ (2014) Beyond single-nucleotide polymorphisms: genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med 35(4):673–684
pubmed: 25453417 pmcid: 5629971 doi: 10.1016/j.ccm.2014.08.006
Moitra S, Puri R, Paul D, Huang YC (2015) Global perspectives of emerging occupational and environmental lung diseases. Curr Opin Pulm Med 21(2):114–120
pubmed: 25575364 doi: 10.1097/MCP.0000000000000136
Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K et al (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187(10):1067–1075
pubmed: 23491408 pmcid: 3734620 doi: 10.1164/rccm.201210-1913OC
Murphy TF, Brauer AL, Grant BJ, Sethi S (2005) Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Respir Crit Care Med 172(2):195–199
pubmed: 15805178 pmcid: 2718466 doi: 10.1164/rccm.200412-1747OC
Nambiar S, Tan DBA, Clynick B, Bong SH, Rawlinson C, Gummer J, Corte TJ, Glaspole I, Moodley YP, Trengove R (2021) Untargeted metabolomics of human plasma reveal lipid markers unique to chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Proteomics Clin Appl 15(2–3):e2000039
pubmed: 33580915 doi: 10.1002/prca.202000039
Naz S, Kolmert J, Yang M, Reinke SN, Kamleh MA, Snowden S, Heyder T, Levanen B, Erle DJ, Skold CM, Wheelock AM et al (2017) Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J 49(6):1602322
pubmed: 28642310 pmcid: 5898938 doi: 10.1183/13993003.02322-2016
Novotna B, Abdel-Hamid M, Koblizek V, Svoboda M, Hejduk K, Rehacek V, Bis J, Salajka F (2018) A pilot data analysis of a metabolomic HPLC-MS/MS study of patients with COPD. Adv Clin Exp Med 27(4):531–539
pubmed: 29943523 doi: 10.17219/acem/68763
Pang Z, Wang G, Wang C, Zhang W, Liu J, Wang F (2018) Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in Northeast China. Biomed Res Int 2018:2860521
pubmed: 30345296 pmcid: 6174811 doi: 10.1155/2018/2860521
Park YH, Fitzpatrick AM, Medriano CA, Jones DP (2017) High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J Allergy Clin Immunol 139(5):1518–1524
pubmed: 27658760 doi: 10.1016/j.jaci.2016.08.018
Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269
pubmed: 22436749 pmcid: 3682684 doi: 10.1038/nrm3314
Pinto-Plata V, Casanova C, Divo M, Tesfaigzi Y, Calhoun V, Sui J, Polverino F, Priolo C, Petersen H, de Torres JP, Marin JM et al (2019) Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir Res 20(1):219
pubmed: 31615518 pmcid: 6794856 doi: 10.1186/s12931-019-1167-y
Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 7(10):e47305
pubmed: 23071781 pmcid: 3469539 doi: 10.1371/journal.pone.0047305
Quan-Jun Y, Jian-Ping Z, Jian-Hua Z, Yong-Long H, Bo X, Jing-Xian Z, Bona D, Yuan Z, Cheng G (2017) Distinct metabolic profile of inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. Basic Clin Pharmacol Toxicol 120(3):303–311
pubmed: 27730746 doi: 10.1111/bcpt.12686
Rafie S, Moitra S, Brashier BB (2018) Association between the serum metabolic profile and lung function in chronic obstructive pulmonary disease. Turk Thorac J 19(1):13–18
pubmed: 29404181 doi: 10.5152/TurkThoracJ.2017.17043
Rahman I (2003) Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol 36(1):95–109
pubmed: 12542980
Ran N, Pang Z, Gu Y, Pan H, Zuo X, Guan X, Yuan Y, Wang Z, Guo Y, Cui Z, Wang F (2019) An updated overview of Metabolomic profile changes in chronic obstructive pulmonary disease. Meta 9(6):111
Reinke SN, Gallart-Ayala H, Gomez C, Checa A, Fauland A, Naz S, Kamleh MA, Djukanovic R, Hinks TS, Wheelock CE (2017) Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J 49(3):1601740
pubmed: 28356371 pmcid: 5399350 doi: 10.1183/13993003.01740-2016
Riely CA, Cohen G, Lieberman M (1974) Ethane evolution: a new index of lipid peroxidation. Science 183(4121):208–210
pubmed: 4808857 doi: 10.1126/science.183.4121.208
Robertson DG, Watkins PB, Reily MD (2011) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 120:S146–S170
pubmed: 21127352 doi: 10.1093/toxsci/kfq358
Rogers AJ, Matthay MA (2014) Applying metabolomics to uncover novel biology in ARDS. Am J Physiol Lung Cell Mol Physiol 306(11):L957–L961
pubmed: 24727586 pmcid: 4042190 doi: 10.1152/ajplung.00376.2013
Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF (2005) Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr 82(1):53–59
pubmed: 16002800 doi: 10.1093/ajcn/82.1.53
Schubert JK, Muller WP, Benzing A, Geiger K (1998) Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med 24(5):415–421
pubmed: 9660254 doi: 10.1007/s001340050589
Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340
pubmed: 26824647 doi: 10.1016/j.cell.2016.01.013
Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295(1):L152–L161
pubmed: 18441091 pmcid: 2494785 doi: 10.1152/ajplung.00515.2007
Serkova NJ, Standiford TJ, Stringer KA (2011) The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med 184(6):647–655
pubmed: 21680948 pmcid: 3208597 doi: 10.1164/rccm.201103-0474CI
Simpson JL, Baines KJ, Horvat JC, Essilfie AT, Brown AC, Tooze M, McDonald VM, Gibson PG, Hansbro PM (2016) COPD is characterized by increased detection of Haemophilus influenzae, Streptococcus pneumoniae and a deficiency of Bacillus species. Respirology 21(4):697–704
pubmed: 26781464 doi: 10.1111/resp.12734
Slupsky CM, Cheypesh A, Chao DV, Fu H, Rankin KN, Marrie TJ, Lacy P (2009a) Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses. J Proteome Res 8(6):3029–3036
pubmed: 19368345 doi: 10.1021/pr900103y
Slupsky CM, Rankin KN, Fu H, Chang D, Rowe BH, Charles PG, McGeer A, Low D, Long R, Kunimoto D, Sawyer MB et al (2009b) Pneumococcal pneumonia: potential for diagnosis through a urinary metabolic profile. J Proteome Res 8(12):5550–5558
pubmed: 19817432 doi: 10.1021/pr9006427
Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma (1)H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300(1):L4–L11
pubmed: 20889676 doi: 10.1152/ajplung.00231.2010
Stringer KA, McKay RT, Karnovsky A, Quemerais B, Lacy P (2016) Metabolomics and its application to acute lung diseases. Front Immunol 7:44
pubmed: 26973643 pmcid: 4770032 doi: 10.3389/fimmu.2016.00044
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) Chapter three – the role of short-chain fatty acids in health and disease. In: Alt FW (ed) Advances in immunology, vol 121. Academic Press, pp 91–119
Tao JL, Chen YZ, Dai QG, Tian M, Wang SC, Shan JJ, Ji JJ, Lin LL, Li WW, Yuan B (2019) Urine metabolic profiles in paediatric asthma. Respirology 24(6):572–581
pubmed: 30763984 doi: 10.1111/resp.13479
Van Vliet D, Smolinska A, Jobsis Q, Rosias PP, Muris JW, Dallinga JW, van Schooten FJ, Dompeling E (2016) Association between exhaled inflammatory markers and asthma control in children. J Breath Res 10(1):016014
pubmed: 26893372 doi: 10.1088/1752-7155/10/1/016014
van Vliet D, Smolinska A, Jobsis Q, Rosias P, Muris J, Dallinga J, Dompeling E, van Schooten FJ (2017) Can exhaled volatile organic compounds predict asthma exacerbations in children? J Breath Res 11(1):016016
pubmed: 28102830 doi: 10.1088/1752-7163/aa5a8b
Veerappan A, Oskuei A, Crowley G, Mikhail M, Ostrofsky D, Gironda Z, Vaidyanathan S, Wadghiri YZ, Liu M, Kwon S, Nolan A (2020) World trade center-cardiorespiratory and vascular dysfunction: assessing the phenotype and metabolome of a murine particulate matter exposure model. Sci Rep 10(1):3130
pubmed: 32081898 pmcid: 7035300 doi: 10.1038/s41598-020-58717-w
Vlahos R (2020) Lipids in chronic obstructive pulmonary disease: a target for future therapy? Am J Respir Cell Mol Biol 62(3):273–274
pubmed: 31577908 pmcid: 7055703 doi: 10.1165/rcmb.2019-0338ED
Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M et al (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396(10258):1204–1222
doi: 10.1016/S0140-6736(20)30925-9
Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349
pubmed: 10793167 doi: 10.1056/NEJM200005043421806
Wei W, Wu X, Bai Y, Li G, Meng H, Feng Y, Li H, Li M, Guan X, Fu M, Wang C et al (2021) Arsenic exposure and its joint effects with cigarette smoking and physical exercise on lung function impairment: evidence from an occupational cohort study. Environ Res 196:110419
pubmed: 33137312 doi: 10.1016/j.envres.2020.110419
Wheelock CE, Goss VM, Balgoma D, Nicholas B, Brandsma J, Skipp PJ, Snowden S, Burg D, D'Amico A, Horvath I, Chaiboonchoe A et al (2013) Application of 'omics technologies to biomarker discovery in inflammatory lung diseases. Eur Respir J 42(3):802–825
pubmed: 23397306 doi: 10.1183/09031936.00078812
Wishart DS (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5(12):2814–2820
pubmed: 16302993 doi: 10.1111/j.1600-6143.2005.01119.x
Wu D, Hou C, Li Y, Zhao Z, Liu J, Lu X, Shang X, Xin Y (2014) Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med 14(1):179
pubmed: 25403149 pmcid: 4273488 doi: 10.1186/1471-2466-14-179
Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9(2):280–299
pubmed: 23543913 doi: 10.1007/s11306-012-0482-9
Xue M, Cai C, Guan L, Xu Y, Lin J, Zeng Y, Hu H, Chen R, Wang H, Zhou L, Sun B (2020) Exploration of n-6 and n-3 polyunsaturated fatty acids metabolites associated with nutritional levels in patients with severe stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 15:1633–1642
pubmed: 32764909 pmcid: 7360408 doi: 10.2147/COPD.S245617
Young RP, Hopkins RJ, Marsland B (2016) The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 54(2):161–169
pubmed: 26473323 doi: 10.1165/rcmb.2015-0250PS
Yu B, Flexeder C, McGarrah RW 3rd, Wyss A, Morrison AC, North KE, Boerwinkle E, Kastenmuller G, Gieger C, Suhre K, Karrasch S et al (2019) Metabolomics identifies novel blood biomarkers of pulmonary function and COPD in the general population. Meta 9(4):61
Zakharkina T, Heinzel E, Koczulla RA, Greulich T, Rentz K, Pauling JK, Baumbach J, Herrmann M, Grunewald C, Dienemann H, von Muller L et al (2013) Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing. PLoS One 8(7):e68302
pubmed: 23874580 pmcid: 3706416 doi: 10.1371/journal.pone.0068302
Zhang R, Chen L, Cao L, Li KJ, Huang Y, Luan XQ, Li G (2018) Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res 19(1):253
pubmed: 30547792 pmcid: 6295055 doi: 10.1186/s12931-018-0959-9
Zhou J, Li Q, Liu C, Pang R, Yin Y (2020) Plasma metabolomics and Lipidomics reveal perturbed metabolites in different disease stages of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 15:553–565
pubmed: 32210549 pmcid: 7073598 doi: 10.2147/COPD.S229505

Auteurs

Subhabrata Moitra (S)

Department of Medicine, Alberta Respiratory Centre (ARC), University of Alberta, Edmonton, AB, Canada.

Arghya Bandyopadhyay (A)

Department of Medicine, Alberta Respiratory Centre (ARC), University of Alberta, Edmonton, AB, Canada.

Paige Lacy (P)

Department of Medicine, Alberta Respiratory Centre (ARC), University of Alberta, Edmonton, AB, Canada. placy@ualberta.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH