On the fluorescence enhancement of arch neuronal optogenetic reporters.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 10 2022
28 10 2022
Historique:
received:
27
05
2022
accepted:
07
10
2022
pubmed:
29
10
2022
medline:
2
11
2022
entrez:
28
10
2022
Statut:
epublish
Résumé
The lack of a theory capable of connecting the amino acid sequence of a light-absorbing protein with its fluorescence brightness is hampering the development of tools for understanding neuronal communications. Here we demonstrate that a theory can be established by constructing quantum chemical models of a set of Archaerhodopsin reporters in their electronically excited state. We found that the experimentally observed increase in fluorescence quantum yield is proportional to the computed decrease in energy difference between the fluorescent state and a nearby photoisomerization channel leading to an exotic diradical of the protein chromophore. This finding will ultimately support the development of technologies for searching novel fluorescent rhodopsin variants and unveil electrostatic changes that make light emission brighter and brighter.
Identifiants
pubmed: 36307417
doi: 10.1038/s41467-022-33993-4
pii: 10.1038/s41467-022-33993-4
pmc: PMC9616920
doi:
Substances chimiques
Rhodopsin
9009-81-8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6432Informations de copyright
© 2022. The Author(s).
Références
J Comput Chem. 2005 Dec;26(16):1668-88
pubmed: 16200636
J Phys Chem B. 2012 Dec 20;116(50):14592-601
pubmed: 23189985
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7764-9
pubmed: 17470789
J Chem Theory Comput. 2019 Nov 12;15(11):5925-5964
pubmed: 31509407
J Neurosci. 2016 Oct 26;36(43):11059-11073
pubmed: 27798186
J Chem Theory Comput. 2016 Feb 9;12(2):839-50
pubmed: 26640959
J Photochem Photobiol B. 2021 Dec;225:112331
pubmed: 34688164
J Chem Theory Comput. 2012 Aug 14;8(8):2559-63
pubmed: 26592102
Nat Chem Biol. 2018 Apr;14(4):352-360
pubmed: 29483642
Int J Mol Sci. 2019 Dec 25;21(1):
pubmed: 31881701
Science. 2012 Sep 7;337(6099):1225-8
pubmed: 22955833
Science. 1953 Mar 27;117(3039):340-1
pubmed: 17741025
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5939-44
pubmed: 23530193
J Chem Phys. 2011 Jun 7;134(21):214113
pubmed: 21663350
Curr Opin Chem Biol. 2017 Aug;39:1-10
pubmed: 28460291
J Chem Theory Comput. 2019 May 14;15(5):3134-3152
pubmed: 30916955
J Comput Chem. 2016 Feb 15;37(5):506-41
pubmed: 26561362
Nat Methods. 2011 Nov 27;9(1):90-5
pubmed: 22120467
J Pharmacol Toxicol Methods. 2016 Sep-Oct;81:240-50
pubmed: 27184445
Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17816-21
pubmed: 16306259
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13034-9
pubmed: 25157169
J Biol Phys. 2012 Jan;38(1):153-68
pubmed: 23277676
Nature. 2010 Jan 7;463(7277):98-102
pubmed: 20054397
Chem Rev. 2014 Jan 8;114(1):126-63
pubmed: 24364740
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):17051-17060
pubmed: 31371514
J Am Chem Soc. 2019 Jan 9;141(1):262-271
pubmed: 30532962
J Chem Theory Comput. 2020 Mar 10;16(3):1555-1567
pubmed: 32027802
Nat Chem. 2018 Apr;10(4):449-455
pubmed: 29556051
Curr Biol. 1996 Feb 1;6(2):178-82
pubmed: 8673464
Nat Commun. 2020 Nov 10;11(1):5682
pubmed: 33173168
J Am Chem Soc. 2011 Mar 16;133(10):3354-64
pubmed: 21341699
Nat Commun. 2014 Sep 15;5:4894
pubmed: 25222271
Science. 2020 Jan 3;367(6473):76-79
pubmed: 31896714
Biophys J. 1997 Nov;73(5):2782-90
pubmed: 9370472
Nat Commun. 2022 Sep 20;13(1):5501
pubmed: 36127376
Nat Methods. 2014 Aug;11(8):825-33
pubmed: 24952910